Loading…

Equiconvergence of spectral decompositions of Hill operators

We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = − d 2 / dx 2 + v ( x ), x ∈ L 1 ([0, π], with H per −1 -potential and the free operator L 0 = − d 2 / dx 2 , subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular...

Full description

Saved in:
Bibliographic Details
Published in:Doklady. Mathematics 2012-07, Vol.86 (1), p.542-544
Main Authors: Djakov, P. B., Mityagin, B. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = − d 2 / dx 2 + v ( x ), x ∈ L 1 ([0, π], with H per −1 -potential and the free operator L 0 = − d 2 / dx 2 , subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that , where S N and S N 0 are the N -th partial sums of the spectral decompositions of L and L 0 . Moreover, if v ∈ H −α with 1/2 < α < 1 and , then we obtain the uniform equiconvergence ‖ S N − S N 0 : L a → L ∞ ‖ → 0 as N → ∞.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562412040333