Loading…
Number theory as the ultimate physical theory
At the Planck scale doubt is cast on the usual notion of space-time and one cannot think about elementary particles. Thus, the fundamental entities of which we consider our Universe to be composed cannot be particles, fields or strings. In this paper the numbers are considered as the fundamental ent...
Saved in:
Published in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2010, Vol.2 (1), p.77-87 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At the Planck scale doubt is cast on the usual notion of space-time and one cannot think about elementary particles. Thus, the fundamental entities of which we consider our Universe to be composed cannot be particles, fields or strings. In this paper the numbers are considered as the fundamental entities. We discuss the construction of the corresponding physical theory. A hypothesis on the quantum fluctuations of the number field is advanced for discussion. If these fluctuations actually take place then instead of the usual quantum mechanics over the complex number field a new quantum mechanics over an arbitrary field must be developed. Moreover, it is tempting to speculate that a principle of invariance of the fundamental physical laws under a change of the number field does hold. The fluctuations of the number field could appear on the Planck length, in particular in the gravitational collapse or near the cosmological singularity. These fluctuations can lead to the appearance of domains with non-Archimedean
p
-adic or finite geometry. We present a short review of the
p
-adic mathematics necessary, in this context. |
---|---|
ISSN: | 2070-0466 2070-0474 |
DOI: | 10.1134/S2070046610010061 |