Loading…
Stem cells and microenvironment: Integration of biochemical and mechanical factors
The role of the microenvironment in the regulation of the main stem cell functions is considered. Special attention is paid to the effects of mechanical interactions and mechanical properties of the substrate on self-renewal, maintenance of potency, and differentiation in stem cells in vivo and in v...
Saved in:
Published in: | Biology bulletin reviews 2014-07, Vol.4 (4), p.263-275 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The role of the microenvironment in the regulation of the main stem cell functions is considered. Special attention is paid to the effects of mechanical interactions and mechanical properties of the substrate on self-renewal, maintenance of potency, and differentiation in stem cells in vivo and in vitro. Primary cilia, mechanosensitive channels, receptors coupled with G proteins, and the proteins of intercellular junctions can be mechanosensors. In turn, the major role in mechanotransduction belongs to integrins, a large family of extracellular matrix receptors. Integrins are part of focal adhesions. They form bridges to link the cell membrane to the cytoskeleton and nucleus. The study of the integration of the biochemical and mechanical factors of the microenvironment is essential for the introduction of stem cell technology into regenerative medicine. |
---|---|
ISSN: | 2079-0864 2079-0872 |
DOI: | 10.1134/S2079086414040069 |