Loading…
β-Cell compensation concomitant with adaptive endoplasmic reticulum stress and β-cell neogenesis in a diet-induced type 2 diabetes model
Insulin-secreting pancreatic β-cells adapt to obesity-related insulin resistance via increases in insulin secretion and β-cell mass. Failed β-cell compensation predicts the onset of type 2 diabetes (T2D). However, the mechanisms of β-cell compensation are not fully understood. Our previous study rep...
Saved in:
Published in: | Applied physiology, nutrition, and metabolism nutrition, and metabolism, 2019-12, Vol.44 (12), p.1355-1366 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insulin-secreting pancreatic β-cells adapt to obesity-related insulin resistance via increases in insulin secretion and β-cell mass. Failed β-cell compensation predicts the onset of type 2 diabetes (T2D). However, the mechanisms of β-cell compensation are not fully understood. Our previous study reported changes in β-cell mass during the progression of T2D in the Nile rat (NR; Arvicanthis niloticus) fed standard chow. In the present study, we measured other β-cell adaptive responses, including glucose metabolism and β-cell insulin secretion in NRs at different ages, thus characterizing NR at 2 months as a model of β-cell compensation followed by decompensation at 6 months. We observed increased proinsulin secretion in the transition from compensation to decompensation, which is indicative of impaired insulin processing. Subsequently, we compared adaptive unfolded protein response in β-cells and demonstrated a positive role of endoplasmic reticulum (ER) chaperones in insulin secretion. In addition, the incidence of insulin-positive neogenic but not proliferative cells increased during the compensation phase, suggesting nonproliferative β-cell growth as a mechanism of β-cell mass adaptation. In contrast, decreased neogenesis and β-cell dedifferentiation were observed in β-cell dysfunction. Furthermore, the progression of T2D and pathophysiological changes of β-cells were prevented by increasing fibre content of the diet.
Novelty
Our study characterized a novel model for β-cell compensation with adaptive responses in cell function and mass.
The temporal association of adaptive ER chaperones with blood insulin and glucose suggests upregulated chaperone capacity as an adaptive mechanism.
β-Cell neogenesis but not proliferation contributes to β-cell mass adaptation. |
---|---|
ISSN: | 1715-5312 1715-5320 |
DOI: | 10.1139/apnm-2019-0144 |