Loading…
Weakly nonlinear localization for a 1-D FPU chain with clustering zones
We study weakly nonlinear spatially localized solutions of a Fermi-Pasta-Ulam model describing a unidimensional chain of particles interacting with a number of neighbors that can vary from site to site. The interaction potential contains quadratic and quartic terms, and is derived from a nonlinear e...
Saved in:
Published in: | The European physical journal. ST, Special topics Special topics, 2014-12, Vol.223 (13), p.2943-2952 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study weakly nonlinear spatially localized solutions of a Fermi-Pasta-Ulam model describing a unidimensional chain of particles interacting with a number of neighbors that can vary from site to site. The interaction potential contains quadratic and quartic terms, and is derived from a nonlinear elastic network model proposed by Juanico et al. [1]. The FPU model can be also derived for arbitrary dimensions, under a small angular displacement assumption. The variable interaction range is a consequence of the spatial inhomogeneity in the equilibrium particle distribution. We here study some simple one-dimensional examples with only a few, well defined agglomeration regions. These agglomerations are seen to lead to spatially localized linear modes and gaps in the linear spectrum, which in turn imply a normal form that has spatially localized periodic orbits. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjst/e2014-02307-7 |