Loading…

STRONG TRACES FOR AVERAGED SOLUTIONS OF HETEROGENEOUS ULTRA-PARABOLIC TRANSPORT EQUATIONS

We prove that if traceability conditions are fulfilled then a weak solution h ∈ L∞(ℝ+ × ℝd × ℝ) to the ultra-parabolic transport equation $$ \partial_t h + {\rm div}_x (F(t,x,\lambda)h) = \sum_{i,j=1}^k \partial^2_{x_i x_j}(b_{ij}(t,x,\lambda) h) + \partial_\lambda \gamma(t,x,\lambda),$$ is such tha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hyperbolic differential equations 2013-12, Vol.10 (4), p.659-676
Main Authors: Aleksic, Jelena, Mitrovic, Darko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that if traceability conditions are fulfilled then a weak solution h ∈ L∞(ℝ+ × ℝd × ℝ) to the ultra-parabolic transport equation $$ \partial_t h + {\rm div}_x (F(t,x,\lambda)h) = \sum_{i,j=1}^k \partial^2_{x_i x_j}(b_{ij}(t,x,\lambda) h) + \partial_\lambda \gamma(t,x,\lambda),$$ is such that for every $\rho \in C^1_c({\mathbb R})$ , the velocity averaged quantity ∫ℝh(t, x, λ) ρ(λ)dλ admits the strong $L^1_{\rm loc}(\mathbb {R}^d)$ -limit as t → 0, i.e. there exist $h_0(x, \lambda) \in L^1_{\rm loc}({\mathbb R}^d \times {\mathbb R})$ and set E ⊂ ℝ+ of full measure such that for every $\rho \in C^1_c({\mathbb R})$ , $$L^1_{\rm loc}({\mathbb R}^d)-\mathop{{\rm lim}}\limits_{t\to 0,t\in E} \int_{{\mathbb R}} h(t,x,\lambda)\rho(\lambda)d\lambda = \int_{{\mathbb R}} h_0(x,\lambda)\rho(\lambda)d\lambda.$$ As a corollary, under the traceability conditions, we prove the existence of strong traces for entropy solutions to ultra-parabolic equations in heterogeneous media.
ISSN:0219-8916
1793-6993
DOI:10.1142/S0219891613500239