Loading…
STRONG TRACES FOR AVERAGED SOLUTIONS OF HETEROGENEOUS ULTRA-PARABOLIC TRANSPORT EQUATIONS
We prove that if traceability conditions are fulfilled then a weak solution h ∈ L∞(ℝ+ × ℝd × ℝ) to the ultra-parabolic transport equation $$ \partial_t h + {\rm div}_x (F(t,x,\lambda)h) = \sum_{i,j=1}^k \partial^2_{x_i x_j}(b_{ij}(t,x,\lambda) h) + \partial_\lambda \gamma(t,x,\lambda),$$ is such tha...
Saved in:
Published in: | Journal of hyperbolic differential equations 2013-12, Vol.10 (4), p.659-676 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that if traceability conditions are fulfilled then a weak solution h ∈ L∞(ℝ+ × ℝd × ℝ) to the ultra-parabolic transport equation
$$ \partial_t h + {\rm div}_x (F(t,x,\lambda)h) = \sum_{i,j=1}^k \partial^2_{x_i x_j}(b_{ij}(t,x,\lambda) h) + \partial_\lambda \gamma(t,x,\lambda),$$
is such that for every
$\rho \in C^1_c({\mathbb R})$
, the velocity averaged quantity ∫ℝh(t, x, λ) ρ(λ)dλ admits the strong
$L^1_{\rm loc}(\mathbb {R}^d)$
-limit as t → 0, i.e. there exist
$h_0(x, \lambda) \in L^1_{\rm loc}({\mathbb R}^d \times {\mathbb R})$
and set E ⊂ ℝ+ of full measure such that for every
$\rho \in C^1_c({\mathbb R})$
,
$$L^1_{\rm loc}({\mathbb R}^d)-\mathop{{\rm lim}}\limits_{t\to 0,t\in E} \int_{{\mathbb R}} h(t,x,\lambda)\rho(\lambda)d\lambda = \int_{{\mathbb R}} h_0(x,\lambda)\rho(\lambda)d\lambda.$$
As a corollary, under the traceability conditions, we prove the existence of strong traces for entropy solutions to ultra-parabolic equations in heterogeneous media. |
---|---|
ISSN: | 0219-8916 1793-6993 |
DOI: | 10.1142/S0219891613500239 |