Loading…
Relaxation and Hysteresis in a Periodically Forced Swift-Hohenberg System
The relaxation and hysteresis of a periodically forced Swift-Hohenberg (SH) equation as a phenomenological model for the magnetic domains of a garnet thin film in an oscillating magnetic field are studied. It is already known that the unforced SH equation settles down to a single type of spatial str...
Saved in:
Published in: | Progress of theoretical and experimental physics 2011-06, Vol.125 (6), p.1123-1132 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The relaxation and hysteresis of a periodically forced Swift-Hohenberg (SH) equation as a phenomenological model for the magnetic domains of a garnet thin film in an oscillating magnetic field are studied. It is already known that the unforced SH equation settles down to a single type of spatial structure called a stripe pattern, and that the relaxation process yields a scaling law for the structure factor. Two types of temporally oscillating spatial structure consisting of stripe and polka-dot patterns have also been asymptotically observed in the case of a periodically forced SH equation. Relaxation scaling behaviors are studied for these two patterns. It is also shown for the forced case that a hysteresis is observed in the vicinity of the boundary between two different spatial patterns in the phase diagram. |
---|---|
ISSN: | 0033-068X 2050-3911 1347-4081 |
DOI: | 10.1143/PTP.125.1123 |