Loading…

Learning to predict indoor illumination from a single image

We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep ne...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on graphics 2017-11, Vol.36 (6), p.1-14
Main Authors: Gardner, Marc-André, Sunkavalli, Kalyan, Yumer, Ersin, Shen, Xiaohui, Gambaretto, Emiliano, Gagné, Christian, Lalonde, Jean-François
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep neural network that directly regresses a limited field-of-view photo to HDR illumination, without strong assumptions on scene geometry, material properties, or lighting. We show that this can be accomplished in a three step process: 1) we train a robust lighting classifier to automatically annotate the location of light sources in a large dataset of LDR environment maps, 2) we use these annotations to train a deep neural network that predicts the location of lights in a scene from a single limited field-of-view photo, and 3) we fine-tune this network using a small dataset of HDR environment maps to predict light intensities. This allows us to automatically recover high-quality HDR illumination estimates that significantly outperform previous state-of-the-art methods. Consequently, using our illumination estimates for applications like 3D object insertion, produces photo-realistic results that we validate via a perceptual user study.
ISSN:0730-0301
1557-7368
DOI:10.1145/3130800.3130891