Loading…

A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks

FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA accel...

Full description

Saved in:
Bibliographic Details
Published in:ACM journal on emerging technologies in computing systems 2018-07, Vol.14 (2), p.1-16
Main Authors: Li, Yixing, Liu, Zichuan, Xu, Kai, Yu, Hao, Ren, Fengbo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized fully mapped FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3× faster and 75× more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5× higher energy efficiency.
ISSN:1550-4832
1550-4840
DOI:10.1145/3154839