Loading…
A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA accel...
Saved in:
Published in: | ACM journal on emerging technologies in computing systems 2018-07, Vol.14 (2), p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized fully mapped FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3× faster and 75× more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5× higher energy efficiency. |
---|---|
ISSN: | 1550-4832 1550-4840 |
DOI: | 10.1145/3154839 |