Loading…
A Simple Model for Portable and Fast Prediction of Execution Time and Power Consumption of GPU Kernels
Characterizing compute kernel execution behavior on GPUs for efficient task scheduling is a non-trivial task. We address this with a simple model enabling portable and fast predictions among different GPUs using only hardware-independent features. This model is built based on random forests using 18...
Saved in:
Published in: | ACM transactions on architecture and code optimization 2021-01, Vol.18 (1), p.1-25 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Characterizing compute kernel execution behavior on GPUs for efficient task scheduling is a non-trivial task. We address this with a simple model enabling portable and fast predictions among different GPUs using only hardware-independent features. This model is built based on random forests using 189 individual compute kernels from benchmarks such as Parboil, Rodinia, Polybench-GPU, and SHOC. Evaluation of the model performance using cross-validation yields a median Mean Average Percentage Error (MAPE) of 8.86–52.0% for time and 1.84–2.94% for power prediction across five different GPUs, while latency for a single prediction varies between 15 and 108 ms. |
---|---|
ISSN: | 1544-3566 1544-3973 |
DOI: | 10.1145/3431731 |