Loading…
Mining Largest Maximal Quasi-Cliques
Quasi-cliques are dense incomplete subgraphs of a graph that generalize the notion of cliques. Enumerating quasi-cliques from a graph is a robust way to detect densely connected structures with applications in bioinformatics and social network analysis. However, enumerating quasi-cliques in a graph...
Saved in:
Published in: | ACM transactions on knowledge discovery from data 2021-10, Vol.15 (5), p.1-21 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quasi-cliques are dense incomplete subgraphs of a graph that generalize the notion of cliques. Enumerating quasi-cliques from a graph is a robust way to detect densely connected structures with applications in bioinformatics and social network analysis. However, enumerating quasi-cliques in a graph is a challenging problem, even harder than the problem of enumerating cliques. We consider the enumeration of top-
k
degree-based quasi-cliques and make the following contributions: (1) we show that even the problem of detecting whether a given quasi-clique is maximal (i.e., not contained within another quasi-clique) is NP-hard. (2) We present a novel heuristic algorithm K
ernel
QC to enumerate the
k
largest quasi-cliques in a graph. Our method is based on identifying
kernels
of extremely dense subgraphs within a graph, followed by growing subgraphs around these kernels, to arrive at quasi-cliques with the required densities. (3) Experimental results show that our algorithm accurately enumerates quasi-cliques from a graph, is much faster than current state-of-the-art methods for quasi-clique enumeration (often more than three orders of magnitude faster), and can scale to larger graphs than current methods. |
---|---|
ISSN: | 1556-4681 1556-472X |
DOI: | 10.1145/3446637 |