Loading…

DiMBERT: Learning Vision-Language Grounded Representations with Disentangled Multimodal-Attention

Vision-and-language (V-L) tasks require the system to understand both vision content and natural language, thus learning fine-grained joint representations of vision and language (a.k.a. V-L representations) is of paramount importance. Recently, various pre-trained V-L models are proposed to learn V...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on knowledge discovery from data 2022-02, Vol.16 (1), p.1-19
Main Authors: Liu, Fenglin, Wu, Xian, Ge, Shen, Ren, Xuancheng, Fan, Wei, Sun, Xu, Zou, Yuexian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vision-and-language (V-L) tasks require the system to understand both vision content and natural language, thus learning fine-grained joint representations of vision and language (a.k.a. V-L representations) is of paramount importance. Recently, various pre-trained V-L models are proposed to learn V-L representations and achieve improved results in many tasks. However, the mainstream models process both vision and language inputs with the same set of attention matrices. As a result, the generated V-L representations are entangled in one common latent space . To tackle this problem, we propose DiMBERT (short for Di sentangled M ultimodal-Attention BERT ), which is a novel framework that applies separated attention spaces for vision and language, and the representations of multi-modalities can thus be disentangled explicitly. To enhance the correlation between vision and language in disentangled spaces, we introduce the visual concepts to DiMBERT which represent visual information in textual format. In this manner, visual concepts help to bridge the gap between the two modalities. We pre-train DiMBERT on a large amount of image–sentence pairs on two tasks: bidirectional language modeling and sequence-to-sequence language modeling. After pre-train, DiMBERT is further fine-tuned for the downstream tasks. Experiments show that DiMBERT sets new state-of-the-art performance on three tasks (over four datasets), including both generation tasks (image captioning and visual storytelling) and classification tasks (referring expressions). The proposed DiM (short for Di sentangled M ultimodal-Attention) module can be easily incorporated into existing pre-trained V-L models to boost their performance, up to a 5% increase on the representative task. Finally, we conduct a systematic analysis and demonstrate the effectiveness of our DiM and the introduced visual concepts.
ISSN:1556-4681
1556-472X
DOI:10.1145/3447685