Loading…
Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates
The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low...
Saved in:
Published in: | ACM transactions on computation theory 2021-12, Vol.13 (4), p.1-37 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log(n/ε)⋅log(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 (s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) . |
---|---|
ISSN: | 1942-3454 1942-3462 |
DOI: | 10.1145/3470861 |