Loading…
Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates
The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low...
Saved in:
Published in: | ACM transactions on computation theory 2021-12, Vol.13 (4), p.1-37 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23 |
container_end_page | 37 |
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on computation theory |
container_volume | 13 |
creator | Kabanets, Valentine Koroth, Sajin Lu, Zhenjian Myrisiotis, Dimitrios Oliveira, Igor C. |
description | The class FORMULA[s]∘G consists of Boolean functions computable by size-
s
De Morgan formulas whose leaves are any Boolean functions from a class G. We give
lower bounds
and (SAT, Learning, and
pseudorandom generators
(
PRG
s
))
algorithms
for FORMULA[n
1.99
]∘G, for classes G of functions with
low communication complexity
. Let R
(k)
G be the maximum
k
-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following:
•
The Generalized Inner Product function GIP
k
n
cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for
s=o(n
2
/k⋅4
k
⋅R
(k)
(G)⋅log(n/ε)⋅log(1/ε))
2
).
This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP
k
n
against FORMULA[n
1.99
]∘PTF
k
−1
, i.e., sub-quadratic-size De Morgan formulas with degree-k-1)
PTF
(
polynomial threshold function
) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.
•
There is a PRG of seed length n/2+O(s⋅R
(2)
(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-
s
formulas with
LTF
(
linear threshold function
) gates at the bottom, we get the better seed length O(n
1/2
⋅s
1/4
⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of
n
halfspaces in the regime where ε≤1/n, complementing a recent result of [45].
•
There exists a randomized 2
n-t
#SAT algorithm for FORMULA[s]∘G, where
t=Ω(n\√s⋅log
2
(s)⋅R
(2)
(G))/1/2.
In particular, this implies a nontrivial #SAT algorithm for FORMULA[n
1.99
]∘LTF.
•
The Minimum Circuit Size Problem is not in FORMULA[n
1.99
]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n
1.99
]∘XOR can be PAC-learned in time 2
O(n/log n)
. |
doi_str_mv | 10.1145/3470861 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3470861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3470861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFbxFWbnKjp_mSbLGm0VIoLoOtzM3FsjSUZmEsS3L8Xi6nyLw7c4jF1LcSulye-0WYnCyhO2kKVRmTZWnf7v3Jyzi5S-hLBWK71gb-t-F2I3fQ6Jw-h5HX4w8vswjz5xCpE_IH8JcQcj34Q4zD0kHuigZVUYhnnsHExdGHmNQHwLE6ZLdkbQJ7w6csk-No_v1VNWv26fq3WdOZUXU-apaEUrdGsQvdMlKPLkNZUKQaJSpfMrshbyVhuQFsg4BVIgtaUurFd6yW7-fl0MKUWk5jt2A8TfRormkKI5ptB7S6lRLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</creator><creatorcontrib>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</creatorcontrib><description>The class FORMULA[s]∘G consists of Boolean functions computable by size-
s
De Morgan formulas whose leaves are any Boolean functions from a class G. We give
lower bounds
and (SAT, Learning, and
pseudorandom generators
(
PRG
s
))
algorithms
for FORMULA[n
1.99
]∘G, for classes G of functions with
low communication complexity
. Let R
(k)
G be the maximum
k
-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following:
•
The Generalized Inner Product function GIP
k
n
cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for
s=o(n
2
/k⋅4
k
⋅R
(k)
(G)⋅log(n/ε)⋅log(1/ε))
2
).
This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP
k
n
against FORMULA[n
1.99
]∘PTF
k
−1
, i.e., sub-quadratic-size De Morgan formulas with degree-k-1)
PTF
(
polynomial threshold function
) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.
•
There is a PRG of seed length n/2+O(s⋅R
(2)
(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-
s
formulas with
LTF
(
linear threshold function
) gates at the bottom, we get the better seed length O(n
1/2
⋅s
1/4
⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of
n
halfspaces in the regime where ε≤1/n, complementing a recent result of [45].
•
There exists a randomized 2
n-t
#SAT algorithm for FORMULA[s]∘G, where
t=Ω(n\√s⋅log
2
(s)⋅R
(2)
(G))/1/2.
In particular, this implies a nontrivial #SAT algorithm for FORMULA[n
1.99
]∘LTF.
•
The Minimum Circuit Size Problem is not in FORMULA[n
1.99
]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n
1.99
]∘XOR can be PAC-learned in time 2
O(n/log n)
.</description><identifier>ISSN: 1942-3454</identifier><identifier>EISSN: 1942-3462</identifier><identifier>DOI: 10.1145/3470861</identifier><language>eng</language><ispartof>ACM transactions on computation theory, 2021-12, Vol.13 (4), p.1-37</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</citedby><cites>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kabanets, Valentine</creatorcontrib><creatorcontrib>Koroth, Sajin</creatorcontrib><creatorcontrib>Lu, Zhenjian</creatorcontrib><creatorcontrib>Myrisiotis, Dimitrios</creatorcontrib><creatorcontrib>Oliveira, Igor C.</creatorcontrib><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><title>ACM transactions on computation theory</title><description>The class FORMULA[s]∘G consists of Boolean functions computable by size-
s
De Morgan formulas whose leaves are any Boolean functions from a class G. We give
lower bounds
and (SAT, Learning, and
pseudorandom generators
(
PRG
s
))
algorithms
for FORMULA[n
1.99
]∘G, for classes G of functions with
low communication complexity
. Let R
(k)
G be the maximum
k
-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following:
•
The Generalized Inner Product function GIP
k
n
cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for
s=o(n
2
/k⋅4
k
⋅R
(k)
(G)⋅log(n/ε)⋅log(1/ε))
2
).
This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP
k
n
against FORMULA[n
1.99
]∘PTF
k
−1
, i.e., sub-quadratic-size De Morgan formulas with degree-k-1)
PTF
(
polynomial threshold function
) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.
•
There is a PRG of seed length n/2+O(s⋅R
(2)
(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-
s
formulas with
LTF
(
linear threshold function
) gates at the bottom, we get the better seed length O(n
1/2
⋅s
1/4
⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of
n
halfspaces in the regime where ε≤1/n, complementing a recent result of [45].
•
There exists a randomized 2
n-t
#SAT algorithm for FORMULA[s]∘G, where
t=Ω(n\√s⋅log
2
(s)⋅R
(2)
(G))/1/2.
In particular, this implies a nontrivial #SAT algorithm for FORMULA[n
1.99
]∘LTF.
•
The Minimum Circuit Size Problem is not in FORMULA[n
1.99
]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n
1.99
]∘XOR can be PAC-learned in time 2
O(n/log n)
.</description><issn>1942-3454</issn><issn>1942-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AURgdRsFbxFWbnKjp_mSbLGm0VIoLoOtzM3FsjSUZmEsS3L8Xi6nyLw7c4jF1LcSulye-0WYnCyhO2kKVRmTZWnf7v3Jyzi5S-hLBWK71gb-t-F2I3fQ6Jw-h5HX4w8vswjz5xCpE_IH8JcQcj34Q4zD0kHuigZVUYhnnsHExdGHmNQHwLE6ZLdkbQJ7w6csk-No_v1VNWv26fq3WdOZUXU-apaEUrdGsQvdMlKPLkNZUKQaJSpfMrshbyVhuQFsg4BVIgtaUurFd6yW7-fl0MKUWk5jt2A8TfRormkKI5ptB7S6lRLA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kabanets, Valentine</creator><creator>Koroth, Sajin</creator><creator>Lu, Zhenjian</creator><creator>Myrisiotis, Dimitrios</creator><creator>Oliveira, Igor C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><author>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabanets, Valentine</creatorcontrib><creatorcontrib>Koroth, Sajin</creatorcontrib><creatorcontrib>Lu, Zhenjian</creatorcontrib><creatorcontrib>Myrisiotis, Dimitrios</creatorcontrib><creatorcontrib>Oliveira, Igor C.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabanets, Valentine</au><au>Koroth, Sajin</au><au>Lu, Zhenjian</au><au>Myrisiotis, Dimitrios</au><au>Oliveira, Igor C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</atitle><jtitle>ACM transactions on computation theory</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>1942-3454</issn><eissn>1942-3462</eissn><abstract>The class FORMULA[s]∘G consists of Boolean functions computable by size-
s
De Morgan formulas whose leaves are any Boolean functions from a class G. We give
lower bounds
and (SAT, Learning, and
pseudorandom generators
(
PRG
s
))
algorithms
for FORMULA[n
1.99
]∘G, for classes G of functions with
low communication complexity
. Let R
(k)
G be the maximum
k
-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following:
•
The Generalized Inner Product function GIP
k
n
cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for
s=o(n
2
/k⋅4
k
⋅R
(k)
(G)⋅log(n/ε)⋅log(1/ε))
2
).
This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP
k
n
against FORMULA[n
1.99
]∘PTF
k
−1
, i.e., sub-quadratic-size De Morgan formulas with degree-k-1)
PTF
(
polynomial threshold function
) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.
•
There is a PRG of seed length n/2+O(s⋅R
(2)
(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-
s
formulas with
LTF
(
linear threshold function
) gates at the bottom, we get the better seed length O(n
1/2
⋅s
1/4
⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of
n
halfspaces in the regime where ε≤1/n, complementing a recent result of [45].
•
There exists a randomized 2
n-t
#SAT algorithm for FORMULA[s]∘G, where
t=Ω(n\√s⋅log
2
(s)⋅R
(2)
(G))/1/2.
In particular, this implies a nontrivial #SAT algorithm for FORMULA[n
1.99
]∘LTF.
•
The Minimum Circuit Size Problem is not in FORMULA[n
1.99
]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n
1.99
]∘XOR can be PAC-learned in time 2
O(n/log n)
.</abstract><doi>10.1145/3470861</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-3454 |
ispartof | ACM transactions on computation theory, 2021-12, Vol.13 (4), p.1-37 |
issn | 1942-3454 1942-3462 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3470861 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20and%20Lower%20Bounds%20for%20De%20Morgan%20Formulas%20of%20Low-Communication%20Leaf%20Gates&rft.jtitle=ACM%20transactions%20on%20computation%20theory&rft.au=Kabanets,%20Valentine&rft.date=2021-12-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=1942-3454&rft.eissn=1942-3462&rft_id=info:doi/10.1145/3470861&rft_dat=%3Ccrossref%3E10_1145_3470861%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |