Loading…

Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates

The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computation theory 2021-12, Vol.13 (4), p.1-37
Main Authors: Kabanets, Valentine, Koroth, Sajin, Lu, Zhenjian, Myrisiotis, Dimitrios, Oliveira, Igor C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23
cites cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23
container_end_page 37
container_issue 4
container_start_page 1
container_title ACM transactions on computation theory
container_volume 13
creator Kabanets, Valentine
Koroth, Sajin
Lu, Zhenjian
Myrisiotis, Dimitrios
Oliveira, Igor C.
description The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .
doi_str_mv 10.1145/3470861
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3470861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3470861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFbxFWbnKjp_mSbLGm0VIoLoOtzM3FsjSUZmEsS3L8Xi6nyLw7c4jF1LcSulye-0WYnCyhO2kKVRmTZWnf7v3Jyzi5S-hLBWK71gb-t-F2I3fQ6Jw-h5HX4w8vswjz5xCpE_IH8JcQcj34Q4zD0kHuigZVUYhnnsHExdGHmNQHwLE6ZLdkbQJ7w6csk-No_v1VNWv26fq3WdOZUXU-apaEUrdGsQvdMlKPLkNZUKQaJSpfMrshbyVhuQFsg4BVIgtaUurFd6yW7-fl0MKUWk5jt2A8TfRormkKI5ptB7S6lRLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</creator><creatorcontrib>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</creatorcontrib><description>The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .</description><identifier>ISSN: 1942-3454</identifier><identifier>EISSN: 1942-3462</identifier><identifier>DOI: 10.1145/3470861</identifier><language>eng</language><ispartof>ACM transactions on computation theory, 2021-12, Vol.13 (4), p.1-37</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</citedby><cites>FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kabanets, Valentine</creatorcontrib><creatorcontrib>Koroth, Sajin</creatorcontrib><creatorcontrib>Lu, Zhenjian</creatorcontrib><creatorcontrib>Myrisiotis, Dimitrios</creatorcontrib><creatorcontrib>Oliveira, Igor C.</creatorcontrib><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><title>ACM transactions on computation theory</title><description>The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .</description><issn>1942-3454</issn><issn>1942-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AURgdRsFbxFWbnKjp_mSbLGm0VIoLoOtzM3FsjSUZmEsS3L8Xi6nyLw7c4jF1LcSulye-0WYnCyhO2kKVRmTZWnf7v3Jyzi5S-hLBWK71gb-t-F2I3fQ6Jw-h5HX4w8vswjz5xCpE_IH8JcQcj34Q4zD0kHuigZVUYhnnsHExdGHmNQHwLE6ZLdkbQJ7w6csk-No_v1VNWv26fq3WdOZUXU-apaEUrdGsQvdMlKPLkNZUKQaJSpfMrshbyVhuQFsg4BVIgtaUurFd6yW7-fl0MKUWk5jt2A8TfRormkKI5ptB7S6lRLA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kabanets, Valentine</creator><creator>Koroth, Sajin</creator><creator>Lu, Zhenjian</creator><creator>Myrisiotis, Dimitrios</creator><creator>Oliveira, Igor C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</title><author>Kabanets, Valentine ; Koroth, Sajin ; Lu, Zhenjian ; Myrisiotis, Dimitrios ; Oliveira, Igor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabanets, Valentine</creatorcontrib><creatorcontrib>Koroth, Sajin</creatorcontrib><creatorcontrib>Lu, Zhenjian</creatorcontrib><creatorcontrib>Myrisiotis, Dimitrios</creatorcontrib><creatorcontrib>Oliveira, Igor C.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabanets, Valentine</au><au>Koroth, Sajin</au><au>Lu, Zhenjian</au><au>Myrisiotis, Dimitrios</au><au>Oliveira, Igor C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates</atitle><jtitle>ACM transactions on computation theory</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>1942-3454</issn><eissn>1942-3462</eissn><abstract>The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .</abstract><doi>10.1145/3470861</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-3454
ispartof ACM transactions on computation theory, 2021-12, Vol.13 (4), p.1-37
issn 1942-3454
1942-3462
language eng
recordid cdi_crossref_primary_10_1145_3470861
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20and%20Lower%20Bounds%20for%20De%20Morgan%20Formulas%20of%20Low-Communication%20Leaf%20Gates&rft.jtitle=ACM%20transactions%20on%20computation%20theory&rft.au=Kabanets,%20Valentine&rft.date=2021-12-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=1942-3454&rft.eissn=1942-3462&rft_id=info:doi/10.1145/3470861&rft_dat=%3Ccrossref%3E10_1145_3470861%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-df8b0b03b4eedc39a2fdfd3f92ea1e229cd7f66a5b34a16af4c2a10efb9386d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true