Loading…

Local Belief Dynamics in Network Knowledge Bases

People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of re...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on computational logic 2022-01, Vol.23 (1), p.1-36
Main Authors: Gallo, Fabio R., Simari, Gerardo I., Martinez, Maria Vanina, Santos, Natalia Abad, Falappa, Marcelo A.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network—or how this can possibly occur—is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agent’s knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.
ISSN:1529-3785
1557-945X
DOI:10.1145/3477394