Loading…
Automating Pruning in Top-Down Enumeration for Program Synthesis Problems with Monotonic Semantics
In top-down enumeration for program synthesis, abstraction-based pruning uses an abstract domain to approximate the set of possible values that a partial program, when completed, can output on a given input. If the set does not contain the desired output, the partial program and all its possible com...
Saved in:
Published in: | Proceedings of ACM on programming languages 2024-10, Vol.8 (OOPSLA2), p.935-961, Article 304 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In top-down enumeration for program synthesis, abstraction-based pruning uses an abstract domain to approximate the set of possible values that a partial program, when completed, can output on a given input. If the set does not contain the desired output, the partial program and all its possible completions can be pruned. In its general form, abstraction-based pruning requires manually designed, domain-specific abstract domains and semantics, and thus has only been used in domain-specific synthesizers. This paper provides sufficient conditions under which a form of abstraction-based pruning can be automated for arbitrary synthesis problems in the general-purpose Semantics-Guided Synthesis (SemGuS) framework without requiring manually-defined abstract domains. We show that if the semantics of the language for which we are synthesizing programs exhibits some monotonicity properties, one can obtain an abstract interval-based semantics for free from the concrete semantics of the programming language, and use such semantics to effectively prune the search space. We also identify a condition that ensures such abstract semantics can be used to compute a precise abstraction of the set of values that a program derivable from a given hole in a partial program can produce. These precise abstractions make abstraction-based pruning more effective. We implement our approach in a tool, Moito, which can tackle synthesis problems defined in the SemGuS framework. Moito can automate interval-based pruning without any a-priori knowledge of the problem domain, and solve synthesis problems that previously required domain-specific, abstraction-based synthesizers— e.g., synthesis of regular expressions, CSV file schema, and imperative programs from examples. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3689744 |