Loading…
Secure Collaborative Learning for Self-Adaptive Systems on Connected Autonomous Vehicles
As an advanced carrier of on-board sensors, connected autonomous vehicle (CAV) can be viewed as an aggregation of self-adaptive systems with monitor-analyze-plan-execute (MAPE) for vehicle-related services. Meanwhile, machine learning (ML) has been applied to enhance analysis and plan functions of M...
Saved in:
Published in: | ACM transactions on autonomous and adaptive systems 2024-08 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As an advanced carrier of on-board sensors, connected autonomous vehicle (CAV) can be viewed as an aggregation of self-adaptive systems with monitor-analyze-plan-execute (MAPE) for vehicle-related services. Meanwhile, machine learning (ML) has been applied to enhance analysis and plan functions of MAPE so that self-adaptive systems have optimal adaption to changing conditions. However, most of ML-based approaches don’t utilize CAVs’ connectivity to collaboratively generate an optimal learner for MAPE, because of sensor data threatened by gradient leakage attack (GLA). In this article, we first design an intelligent architecture for MAPE-based self-adaptive systems on Web 3.0-based CAVs, in which a collaborative machine learner supports the capabilities of managing systems. Then, we observe by practical experiments that importance sampling of sparse vector technique (SVT) approaches cannot defend GLA well. Next, we propose a fine-grained SVT approach to secure the learner in MAPE-based self-adaptive systems, that uses layer and gradient sampling to select uniform and important gradients. At last, extensive experiments show that our private learner spends a slight utility cost for MAPE (e.g., \(0.77\%\) decrease in accuracy) defending GLA and outperforms the typical SVT approaches in terms of defense (increased by \(10\%\sim 14\%\) attack success rate) and utility (decreased by \(1.29\%\) accuracy loss). |
---|---|
ISSN: | 1556-4665 1556-4703 |
DOI: | 10.1145/3690768 |