Loading…

Breath-by-breath Analysis of a Rat Model of Pompe Disease Exposes Deficits in High-frequency Behaviors

Abstract only Pompe disease (PD) is caused by a loss of function of the enzyme acid-α-glucosidase (GAA) leading to glycogen accumulation, neuromuscular dysfunction, and breathing failure. Here, we characterized longitudinal changes in breathing of GAA null ( Gaa −/− ) rats on a breath-by-breath basi...

Full description

Saved in:
Bibliographic Details
Published in:Physiology (Bethesda, Md.) Md.), 2024-05, Vol.39 (S1)
Main Authors: Mickle, Alyssa, Rana, Sabhya, Benevides, Ethan, Byrne, Barry, Fuller, David, Dale, Erica
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract only Pompe disease (PD) is caused by a loss of function of the enzyme acid-α-glucosidase (GAA) leading to glycogen accumulation, neuromuscular dysfunction, and breathing failure. Here, we characterized longitudinal changes in breathing of GAA null ( Gaa −/− ) rats on a breath-by-breath basis using a novel respiratory event detection algorithm. Adult Pompe (n = 5) and Sprague Dawley (n = 5) rats were implanted with chronic diaphragm EMG electrodes. Once a month from 4-10 months of age, full body plethysmography with concurrent EMG was used to record respiratory waveforms under room air and hypoxia. Waveforms were analyzed by the Adjustable Baselines Respiratory Analysis Program (ABRAP) algorithm. An adaptive threshold identified “respiratory events” defined as crossings of a threshold set between the recent maxima and minima of the waveform. After event identification, a range of waveform characteristics are calculated and tagged to that event. Averages of each characteristic were taken for all events and then analyzed based on respiratory rate in breaths/minute (bpm): low (240 bpm, ‘high frequency sniffng’). In room air, Pompe rats had a lower breathing rate than wildtype rats by month 10 (173 vs 285 bpm, standard error of the difference (SE of diff.) 37, p=0.03). This decrease in frequency was driven by the high rate events as there were no differences in the mean rate of low rate events at month 10 (80 vs 83 bpm, SE of diff. 3) while the frequency of high rate events was significantly lower by 9 months (mo 9: 393 vs 440 bpm, SE of diff. 16, p=0.04, mo 10: 383 vs 440 bpm, SE of diff. 17, p=0.008). Not only was the breathing frequency of high-rate events impaired in Pompe rats, but there was a trend towards decrease in the proportion of events falling in the high rate category indicating less time spent in high rate breathing behaviors (mo 4: 52 vs 59%, SE of diff. 6, mo 10: 25 vs 52%, SE of diff. 9) with a concomitant increase in the proportion of low frequency events. Additionally, there was a main effect of genotype on the latency between diaphragm activation and onset of inspiratory flow during hypoxia with Pompe rats having a longer latency across all months and frequency bands. This difference was most pronounced in the medium (44 vs 29 ms, SE of diff. 4 ms, p=0.003) frequency events. Active expiration was impaired in Pompe animals with peak post-event airflow (maximum
ISSN:1548-9213
1548-9221
DOI:10.1152/physiol.2024.39.S1.901