Loading…

Scalable Algorithms for Adaptive Statistical Designs

We present a scalable, high‐performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clini...

Full description

Saved in:
Bibliographic Details
Published in:Scientific programming 2000-01, Vol.8 (3), p.183-193
Main Authors: Oehmke, Robert, Hardwick, Janis, Stout, Quentin F.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a scalable, high‐performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply‐nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching.
ISSN:1058-9244
1875-919X
DOI:10.1155/2000/508081