Loading…
Recent Progress in Hydrogen Electrocatalysis
Recently, we have proposed a unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode. It provides a framework describing the whole course of bond-breaking electron transfer, which explains catalytic effects caused by the p...
Saved in:
Published in: | Advances in Physical Chemistry 2011-01, Vol.2011 (1), p.281-294 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, we have proposed a unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode. It provides a framework describing the whole course of bond-breaking electron transfer, which explains catalytic effects caused by the presence of surface d bands. In application on real systems, the parameters of this model—interaction strengths, densities of states, and energies of reorganization—are obtained from density functional theory (DFT). In this opportunity, we review our main achievements in applying the theory of electrocatalysis. Particularly, we have focused on the electrochemical adsorption of a proton from the solution—the Volmer reaction—on a variety of systems of technological interest, such as bare single crystals and nanostructured surfaces. We discuss in detail the interaction of the surface metal d band with the valence orbital of the reactant and its effect on the catalytic activity as well as other aspects that influence the surface-electrode reactivity such as strain and chemical factors. |
---|---|
ISSN: | 1687-7985 1687-7993 |
DOI: | 10.1155/2011/851640 |