Loading…
Improving the Performance of Reprocessed ABS Products from the Manufacturing Perspective via the Taguchi Method
Additives are costly and can have negative environmental effects. Thus, searching for other alternatives to improve recycling plastics without using additives is necessary. This study aims to improve the hoop tensile strength, elongation at break, and shrinkage of the ring stopper made from an acryl...
Saved in:
Published in: | International journal of manufacturing engineering 2013-01, Vol.2013 (2013), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additives are costly and can have negative environmental effects. Thus, searching for other alternatives to improve recycling plastics without using additives is necessary. This study aims to improve the hoop tensile strength, elongation at break, and shrinkage of the ring stopper made from an acrylonitrile butadiene styrene blend comprising 40% recyclates through the optimization of processing parameters using the Taguchi method. By adopting the L9 Taguchi orthogonal array, four controllable factors each at three levels are tested to determine the optimal combination of factors and levels in the injection moulding process. Considering the multiple quality characteristics involved in this study, we investigate the effects of processing parameters on hoop tensile strength, elongation at break, and shrinkage of the ring stopper both separately and simultaneously because changing a parameter can result in the improvement or deterioration of each quality response and of the overall product performance. The results revealed that the performance of an injection-moulded ring stopper under the optimal process conditions is equivalent or slightly better than that of the part produced from virgin resin. The performance of recycled plastics can be effectively enhanced to levels comparable with virgin resins using the Taguchi optimization approach. |
---|---|
ISSN: | 2356-7023 2314-5781 2314-5781 |
DOI: | 10.1155/2013/824562 |