Loading…
Noncrossing Monochromatic Subtrees and Staircases in 0-1 Matrices
The following question is asked by the senior author (Gyárfás (2011)). What is the order of the largest monochromatic noncrossing subtree (caterpillar) that exists in every 2-coloring of the edges of a simple geometric Kn,n? We solve one particular problem asked by Gyárfás (2011): separate the Ramse...
Saved in:
Published in: | Journal of Discrete Mathematics 2014-01, Vol.2014, p.1-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The following question is asked by the senior author (Gyárfás (2011)). What is the order of the largest monochromatic noncrossing subtree (caterpillar) that exists in every 2-coloring of the edges of a simple geometric Kn,n? We solve one particular problem asked by Gyárfás (2011): separate the Ramsey number of noncrossing trees from the Ramsey number of noncrossing double stars. We also reformulate the question as a Ramsey-type problem for 0-1 matrices and pose the following conjecture. Every n×n 0-1 matrix contains n−1 zeros or n−1 ones, forming a staircase: a sequence which goes right in rows and down in columns, possibly skipping elements, but not at turning points. We prove this conjecture in some special cases and put forward some related problems as well. |
---|---|
ISSN: | 2090-9837 2090-9845 |
DOI: | 10.1155/2014/731519 |