Loading…
Aproximación a la metodología basada en árboles de decisión (CART). Mortalidad hospitalaria del infarto agudo de miocardio
Resumen Objetivo Realizar una aproximación a la metodología de árboles de decisión tipo CART (Classification and Regression Trees) desarrollando un modelo para calcular la probabilidad de muerte hospitalaria en infarto agudo de miocardio (IAM). Método Se utiliza el conjunto mínimo básico de datos al...
Saved in:
Published in: | Gaceta sanitaria 2008, Vol.22 (1), p.65-72 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | Spanish |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resumen Objetivo Realizar una aproximación a la metodología de árboles de decisión tipo CART (Classification and Regression Trees) desarrollando un modelo para calcular la probabilidad de muerte hospitalaria en infarto agudo de miocardio (IAM). Método Se utiliza el conjunto mínimo básico de datos al alta hospitalaria (CMBD) de Andalucía, Cataluña, Madrid y País Vasco de los años 2001 y 2002, que incluye los casos con IAM como diagnóstico principal. Los 33.203 pacientes se dividen aleatoriamente (70 y 30 %) en grupo de desarrollo (GD = 23.277) y grupo de validación (GV = 9.926). Como CART se utiliza un modelo inductivo basado en el algoritmo de Breiman, con análisis de sensibilidad mediante el índice de Gini y sistema de validación cruzada. Se compara con un modelo de regresión logística (RL) y una red neuronal artificial (RNA) ( multilayer perceptron ). Los modelos desarrollados se contrastan en el GV y sus propiedades se comparan con el área bajo la curva ROC (ABC) (intervalo de confianza del 95%). Resultados En el GD el CART con ABC = 0,85 (0,86-0,88), RL 0,87 (0,86-0,88) y RNA 0,85 (0,85-0,86). En el GV el CART con ABC = 0,85 (0,85-0,88), RL 0,86 (0,85-0,88) y RNA 0,84 (0,83-0,86). Conclusiones Los 3 modelos obtienen resultados similares en su capacidad de discriminación. El modelo CART ofrece como ventaja su simplicidad de uso y de interpretación, ya que las reglas de decisión que generan pueden aplicarse sin necesidad de procesos matemáticos. |
---|---|
ISSN: | 0213-9111 |
DOI: | 10.1157/13115113 |