Loading…

Refining PID Controllers Using Neural Networks

The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. We extend this idea further by presenting the MANNCON (Multivariable Artificial Neural Network Control) algorithm by which the mathe...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation 1992-09, Vol.4 (5), p.746-757
Main Authors: Scott, Gary M., Shavlik, Jude W., Ray, W. Harmon
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. We extend this idea further by presenting the MANNCON (Multivariable Artificial Neural Network Control) algorithm by which the mathematical equations governing a PID (Proportional-Integral-Derivative) controller determine the topology and initial weights of a network, which is further trained using backpropagation. We apply this method to the task of controlling the outflow and temperature of a water tank, producing statistically significant gains in accuracy over both a standard neural network approach and a nonlearning PID controller. Furthermore, using the PID knowledge to initialize the weights of the network produces statistically less variation in test set accuracy when compared to networks initialized with small random numbers.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.1992.4.5.746