Loading…

Neural Network Process Models Based on Linear Model Structures

The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. This idea is extended by presenting the MANNIDENT (Multivariable Artificial Neural Network Identification) algorithm by which the ma...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation 1994-07, Vol.6 (4), p.718-738
Main Authors: Scott, Gary M., Ray, W. Harmon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The KBANN (Knowledge-Based Artificial Neural Networks) approach uses neural networks to refine knowledge that can be written in the form of simple propositional rules. This idea is extended by presenting the MANNIDENT (Multivariable Artificial Neural Network Identification) algorithm by which the mathematical equations of linear dynamic process models determine the topology and initial weights of a network, which is further trained using backpropagation. This method is applied to the task of modeling a nonisothermal chemical reactor in which a first-order exothermic reaction is occurring. This method produces statistically significant gains in accuracy over both a standard neural network approach and a linear model. Furthermore, using the approximate linear model to initialize the weights of the network produces statistically less variation in model fidelity. By structuring the neural network according to the approximate linear model, the model can be readily interpreted.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.1994.6.4.718