Loading…
A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations
Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differentia...
Saved in:
Published in: | Taiwanese journal of mathematics 2021-10, Vol.25 (5), p.959-979 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm/210501 |