Loading…

A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations

Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differentia...

Full description

Saved in:
Bibliographic Details
Published in:Taiwanese journal of mathematics 2021-10, Vol.25 (5), p.959-979
Main Authors: Oloniiju, Shina Daniel, Goqo, Sicelo Praisegod, Sibanda, Precious
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3
cites cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3
container_end_page 979
container_issue 5
container_start_page 959
container_title Taiwanese journal of mathematics
container_volume 25
creator Oloniiju, Shina Daniel
Goqo, Sicelo Praisegod
Sibanda, Precious
description Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.
doi_str_mv 10.11650/tjm/210501
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_210501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27083128</jstor_id><sourcerecordid>27083128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMouFZPnoXcZW0mu8mmx9IPFSoV7H3Jxyxmabs1SRH_vdGKp-F955k5PITcAnsAkIKNU78bc2CCwRkpOOd1KZWAc1IA400patVckqsYe8a4kiALglP6GvHohjIe0Kagt_QF0_vgaDcEuvE7pHMfU_DmmNDRdXCY68-Me5fz20FbpMugbfLDPh_PfddhwH3yOSw-jvqnj9fkotPbiDd_c0Q2y8Vm9lSu1o_Ps-mqtHzCU1l1gMI1II0GRIeIxlgFhteNksgaYZQCmKATeVHbzNUVcsGMrLGyphqR-9NbG4YYA3btIfidDl8tsPZXUJsFtSdBmb470X1MQ_hHecNUBVxV33RPZI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><source>Project Euclid Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</creator><creatorcontrib>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</creatorcontrib><description>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm/210501</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><ispartof>Taiwanese journal of mathematics, 2021-10, Vol.25 (5), p.959-979</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</citedby><cites>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27083128$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27083128$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Oloniiju, Shina Daniel</creatorcontrib><creatorcontrib>Goqo, Sicelo Praisegod</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><title>Taiwanese journal of mathematics</title><description>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</description><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMouFZPnoXcZW0mu8mmx9IPFSoV7H3Jxyxmabs1SRH_vdGKp-F955k5PITcAnsAkIKNU78bc2CCwRkpOOd1KZWAc1IA400patVckqsYe8a4kiALglP6GvHohjIe0Kagt_QF0_vgaDcEuvE7pHMfU_DmmNDRdXCY68-Me5fz20FbpMugbfLDPh_PfddhwH3yOSw-jvqnj9fkotPbiDd_c0Q2y8Vm9lSu1o_Ps-mqtHzCU1l1gMI1II0GRIeIxlgFhteNksgaYZQCmKATeVHbzNUVcsGMrLGyphqR-9NbG4YYA3btIfidDl8tsPZXUJsFtSdBmb470X1MQ_hHecNUBVxV33RPZI8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Oloniiju, Shina Daniel</creator><creator>Goqo, Sicelo Praisegod</creator><creator>Sibanda, Precious</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><author>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oloniiju, Shina Daniel</creatorcontrib><creatorcontrib>Goqo, Sicelo Praisegod</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oloniiju, Shina Daniel</au><au>Goqo, Sicelo Praisegod</au><au>Sibanda, Precious</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>5</issue><spage>959</spage><epage>979</epage><pages>959-979</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm/210501</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1027-5487
ispartof Taiwanese journal of mathematics, 2021-10, Vol.25 (5), p.959-979
issn 1027-5487
2224-6851
language eng
recordid cdi_crossref_primary_10_11650_tjm_210501
source Project Euclid Open Access; JSTOR Archival Journals and Primary Sources Collection
title A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pseudo-spectral%20Method%20for%20Time%20Distributed%20Order%20Two-sided%20Space%20Fractional%20Differential%20Equations&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Oloniiju,%20Shina%20Daniel&rft.date=2021-10-01&rft.volume=25&rft.issue=5&rft.spage=959&rft.epage=979&rft.pages=959-979&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm/210501&rft_dat=%3Cjstor_cross%3E27083128%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27083128&rfr_iscdi=true