Loading…
A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations
Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differentia...
Saved in:
Published in: | Taiwanese journal of mathematics 2021-10, Vol.25 (5), p.959-979 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3 |
container_end_page | 979 |
container_issue | 5 |
container_start_page | 959 |
container_title | Taiwanese journal of mathematics |
container_volume | 25 |
creator | Oloniiju, Shina Daniel Goqo, Sicelo Praisegod Sibanda, Precious |
description | Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available. |
doi_str_mv | 10.11650/tjm/210501 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_11650_tjm_210501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27083128</jstor_id><sourcerecordid>27083128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMouFZPnoXcZW0mu8mmx9IPFSoV7H3Jxyxmabs1SRH_vdGKp-F955k5PITcAnsAkIKNU78bc2CCwRkpOOd1KZWAc1IA400patVckqsYe8a4kiALglP6GvHohjIe0Kagt_QF0_vgaDcEuvE7pHMfU_DmmNDRdXCY68-Me5fz20FbpMugbfLDPh_PfddhwH3yOSw-jvqnj9fkotPbiDd_c0Q2y8Vm9lSu1o_Ps-mqtHzCU1l1gMI1II0GRIeIxlgFhteNksgaYZQCmKATeVHbzNUVcsGMrLGyphqR-9NbG4YYA3btIfidDl8tsPZXUJsFtSdBmb470X1MQ_hHecNUBVxV33RPZI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><source>Project Euclid Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</creator><creatorcontrib>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</creatorcontrib><description>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</description><identifier>ISSN: 1027-5487</identifier><identifier>EISSN: 2224-6851</identifier><identifier>DOI: 10.11650/tjm/210501</identifier><language>eng</language><publisher>Mathematical Society of the Republic of China</publisher><ispartof>Taiwanese journal of mathematics, 2021-10, Vol.25 (5), p.959-979</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</citedby><cites>FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27083128$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27083128$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Oloniiju, Shina Daniel</creatorcontrib><creatorcontrib>Goqo, Sicelo Praisegod</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><title>Taiwanese journal of mathematics</title><description>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</description><issn>1027-5487</issn><issn>2224-6851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMouFZPnoXcZW0mu8mmx9IPFSoV7H3Jxyxmabs1SRH_vdGKp-F955k5PITcAnsAkIKNU78bc2CCwRkpOOd1KZWAc1IA400patVckqsYe8a4kiALglP6GvHohjIe0Kagt_QF0_vgaDcEuvE7pHMfU_DmmNDRdXCY68-Me5fz20FbpMugbfLDPh_PfddhwH3yOSw-jvqnj9fkotPbiDd_c0Q2y8Vm9lSu1o_Ps-mqtHzCU1l1gMI1II0GRIeIxlgFhteNksgaYZQCmKATeVHbzNUVcsGMrLGyphqR-9NbG4YYA3btIfidDl8tsPZXUJsFtSdBmb470X1MQ_hHecNUBVxV33RPZI8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Oloniiju, Shina Daniel</creator><creator>Goqo, Sicelo Praisegod</creator><creator>Sibanda, Precious</creator><general>Mathematical Society of the Republic of China</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</title><author>Oloniiju, Shina Daniel ; Goqo, Sicelo Praisegod ; Sibanda, Precious</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oloniiju, Shina Daniel</creatorcontrib><creatorcontrib>Goqo, Sicelo Praisegod</creatorcontrib><creatorcontrib>Sibanda, Precious</creatorcontrib><collection>CrossRef</collection><jtitle>Taiwanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oloniiju, Shina Daniel</au><au>Goqo, Sicelo Praisegod</au><au>Sibanda, Precious</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations</atitle><jtitle>Taiwanese journal of mathematics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>5</issue><spage>959</spage><epage>979</epage><pages>959-979</pages><issn>1027-5487</issn><eissn>2224-6851</eissn><abstract>Time distributed order two-sided space differential equations of arbitrary order offer a robust approach to modelling complex dynamical systems. In this study, we describe a scheme for obtaining the numerical solutions of time distributed order multidimensional two-sided space fractional differential equations. The numerical discretization scheme is a hybrid scheme, comprising a Newton–Cotes quadrature formula and a spectral collocation method. The time distributed order fractional differential operator is approximated using the composite Simpson’s rule, and the solution of the resulting differential equation is expressed as a linear combination of shifted Chebyshev polynomials in all variables. Convergence analysis of the numerical scheme is presented. Some one- and two-dimensional time distributed order two-sided space fractional differential equations, such as the fractional advection-dispersion and diffusion equations, are presented to demonstrate the accuracy and computational efficiency of the numerical scheme, and numerical solutions are compared with the exact solutions, where these are available.</abstract><pub>Mathematical Society of the Republic of China</pub><doi>10.11650/tjm/210501</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-5487 |
ispartof | Taiwanese journal of mathematics, 2021-10, Vol.25 (5), p.959-979 |
issn | 1027-5487 2224-6851 |
language | eng |
recordid | cdi_crossref_primary_10_11650_tjm_210501 |
source | Project Euclid Open Access; JSTOR Archival Journals and Primary Sources Collection |
title | A Pseudo-spectral Method for Time Distributed Order Two-sided Space Fractional Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pseudo-spectral%20Method%20for%20Time%20Distributed%20Order%20Two-sided%20Space%20Fractional%20Differential%20Equations&rft.jtitle=Taiwanese%20journal%20of%20mathematics&rft.au=Oloniiju,%20Shina%20Daniel&rft.date=2021-10-01&rft.volume=25&rft.issue=5&rft.spage=959&rft.epage=979&rft.pages=959-979&rft.issn=1027-5487&rft.eissn=2224-6851&rft_id=info:doi/10.11650/tjm/210501&rft_dat=%3Cjstor_cross%3E27083128%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-3f1e5d716ba1eedeeebbc81b24786e075b88119ed5ebb4c16b43e250b64e3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27083128&rfr_iscdi=true |