Loading…
ON THE EXISTENCE OF STRONG SOLUTIONS TO SOME SEMILINEAR ELLIPTIC PROBLEMS
We study the following semilinear elliptic problem: $\left\{ {\mathop {\mathop \Sigma \limits_{i,j = 1}^N }\limits_{u = 0} } \right.\mathop {{a_{ij}}\left( {x,u}\right)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}}\limits_{on\,\,\partial B,} + \,\sum\limits_{i = 1}^N {{b_i}\left( {x,u} \rig...
Saved in:
Published in: | Taiwanese journal of mathematics 2002-09, Vol.6 (3), p.343-354 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the following semilinear elliptic problem: $\left\{ {\mathop {\mathop \Sigma \limits_{i,j = 1}^N }\limits_{u = 0} } \right.\mathop {{a_{ij}}\left( {x,u}\right)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}}\limits_{on\,\,\partial B,} + \,\sum\limits_{i = 1}^N {{b_i}\left( {x,u} \right)} \,\frac{{\partial u}}{{\partial {x_i}}} + c\left( {x,u} \right)u = f\left( x\right)$ in B, where B is a ball in ℝN, N ≥ 3, aij = aij(x, r) ∊ C0,1(B̄ × ℝ), aij, ∂aij/∂xi, ∂aij/∂r, bi, c ∊ L∞(B × ℝ), with i, j = 1, 2, ... , N and c ≤ 0, and f ∊ Lp(B). For each p, p ≥ N, there exists a strong solution $u\, \in \,{W^{2,p}}\left( B \right)\, \cap \,W_0^{1,p}\left( B \right)$ provided the oscillations of aij with respect to r are sufficiently small. Moreover, for N/2 < p < N, if ǁfǁLp is small enough, then the existence result remains hold. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/twjm/1500558300 |