Loading…

Poster Session II: Investigating photoreceptor function in disease-affected retinas using optoretinography

Assessing the functional response of photoreceptors is vital in understanding retinal disease progression. Traditional subjective methods like visual acuity and visual fields, and objective ones like electroretinography, have limitations. An ideal complement to these techniques is optoretinography (...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vision (Charlottesville, Va.) Va.), 2023-12, Vol.23 (15), p.63
Main Authors: Maddipatla, Reddikumar, Langlo, Christopher, Vienola, Kari, Bartuzel, Maciej, Pijewska, Ewelina, Zawadzki, Robert, Jonnal, Ravi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessing the functional response of photoreceptors is vital in understanding retinal disease progression. Traditional subjective methods like visual acuity and visual fields, and objective ones like electroretinography, have limitations. An ideal complement to these techniques is optoretinography (ORG), which images the retina and tests its function at once. ORG utilizes the phase of the optical coherence tomography (OCT) signal to quantify nanometer-scale changes, measuring subtle photoreceptor responses to stimuli. Efforts to observe stimulus-evoked responses in human cone photoreceptors began with adaptive optics (AO) and common path interferometry, enabling the resolution and tracking of individual cells. Advances in OCT systems with cellular resolution through AO or digital aberration correction successfully measured ORG responses from single cones and rods. This method tracks phase differences between outer segment tips (COST or ROST) and the inner-outer segment junction (IS/OS) to assess individual cell responses. A novel velocity-based method recently demonstrated the feasibility of measuring ORG signals with clinical-grade OCT systems. In the present work, we implemented this technique on disease-affected human retinas, revealing lower magnitudes of response compared to healthy retinas, and highlighting its potential clinical applications.
ISSN:1534-7362
1534-7362
DOI:10.1167/jov.23.15.63