Loading…

Improving Simulations of Warm Rain in a Bulk Microphysics Scheme

Current bulk microphysical parameterization schemes underpredict precipitation intensities and drop size distributions (DSDs) during warm rain periods, particularly upwind of coastal terrain. To help address this deficiency, this study introduces a set of modifications, called RCON, to the liquid-ph...

Full description

Saved in:
Bibliographic Details
Published in:Monthly weather review 2024-01, Vol.152 (1), p.169-185
Main Authors: Conrick, Robert, Mass, Clifford F., McMurdie, Lynn
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current bulk microphysical parameterization schemes underpredict precipitation intensities and drop size distributions (DSDs) during warm rain periods, particularly upwind of coastal terrain. To help address this deficiency, this study introduces a set of modifications, called RCON, to the liquid-phase (warm rain) parameterization currently used in the Thompson–Eidhammer microphysical parameterization scheme. RCON introduces several model modifications, motivated by evaluating simulations from a bin scheme, which together result in more accurate precipitation simulations during periods of warm rain. Among the most significant changes are 1) the use of a wider cloud water DSD of lognormal shape instead of the gamma DSD used by the Thompson–Eidhammer parameterization and 2) enhancement of the cloud-to-rain autoconversion parameterization. Evaluation of RCON is performed for two warm rain events and an extended period during the Olympic Mountains Experiment (OLYMPEX) field campaign of winter 2015/16. We show that RCON modifications produce more realistic precipitation distributions and rain DSDs than the default Thompson–Eidhammer configuration. For the multimonth OLYMPEX period, we show that rain rates, rainwater mixing ratios, and raindrop number concentrations were increased relative to the Thompson–Eidhammer microphysical parameterization, while concurrently decreasing raindrop diameters in liquid-phase clouds. These changes are consistent with an increase in simulated warm rain. Finally, real-time evaluation of the scheme from August 2021 to August 2022 demonstrated improved precipitation prediction over coastal areas of the Pacific Northwest.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-23-0035.1