Loading…

Tailoring composite materials for nonlinear viscoelastic properties using artificial neural networks

Polymer matrix composites exhibit nonlinear viscoelastic behavior over a wide range of temperatures and loading frequencies, which requires an elaborate experimental characterization campaign. Methods are now available to accelerate the characterization process and recover elastic modulus from stora...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composite materials 2021-05, Vol.55 (11), p.1547-1560
Main Authors: Xu, Xianbo, Elgamal, Mariam, Doddamani, Mrityunjay, Gupta, Nikhil
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymer matrix composites exhibit nonlinear viscoelastic behavior over a wide range of temperatures and loading frequencies, which requires an elaborate experimental characterization campaign. Methods are now available to accelerate the characterization process and recover elastic modulus from storage modulus (E′). However, these methods are limited to the linear viscoelastic region and need to be expanded to nonlinear viscoelastic problems to enable materials design. The present work aims to build a general machine learning based architecture to accelerate the characterization and materials design process for nonlinear viscoelastic materials using the E′ results. To expand outside the linear viscoelastic region, general relations of viscoelasticity are first developed so the master relation of E′ considering nonlinear viscoelasticity can be transformed to time domain relaxation function. The transform starts with building the master relation by optimizing the artificial neural network (ANN) formulation using Kriging model and genetic algorithm. Then the master relation is transformed to a relaxation function, which can be used to predict the stress response with a given strain history and to further extract the elastic modulus. The transform is tested on high density polyethylene matrix syntactic foams and the accuracy is found by comparing the predicted materials properties with those obtained from tensile tests. The good agreements indicate the transform can predict the elastic modulus under a wide range of temperatures and strain rates for any composition of the composite and can be used for material design problems.
ISSN:0021-9983
1530-793X
DOI:10.1177/0021998320973744