Loading…
In-situ damage sensing in intra-ply glass/carbon laminate composites under interlaminar shear loading
An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded c...
Saved in:
Published in: | Journal of composite materials 2022-01, Vol.56 (2), p.213-222 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded carbon nanotubes (CNTs) in an epoxy matrix along with the carbon fibers in the intra-ply hybrid laminates. CNTs are dispersed in the epoxy matrix using a combination of ultrasonication and shear mixing techniques. Four circumferential ring probes are used to examine the electrical response under interlaminar shear load. The effect of four different intra-ply orientations (((0–90)C, where carbon fibers are oriented along the loading direction), ((0–90)G, where glass fibers are oriented along the loading direction), ((45/−45, where glass and carbon fibers are oriented at 45o/−45o and the laminates are repeated), and ((45/−45)A, where glass and carbon fibers are oriented at 45o/−45o and the laminates are alternated)) on the shear constitutive behavior and the damage detection are discussed. Intra-ply orientations of (45/−45) and (45/−45)A showed higher interlaminar shear strength and shear strain at break compared to (0/90)C and (0/90)G orientations. Out of all four orientations, (45/−45)A provided a better resolution of electrical response for damage sensing applications. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/00219983211049291 |