Loading…
The Bayesian stance: Equations for ‘as-if’ sensorimotor agency
The verb ‘to do’ plays a vital part in our understanding of the world, and it goes hand-in-hand with words such as active, action and agent. But the physical sciences describe only mechanical happenings, not acts. Their theoretical language is, in essence, a strict mathematical formalism applied to...
Saved in:
Published in: | Adaptive behavior 2017-04, Vol.25 (2), p.72-82 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The verb ‘to do’ plays a vital part in our understanding of the world, and it goes hand-in-hand with words such as active, action and agent. But the physical sciences describe only mechanical happenings, not acts. Their theoretical language is, in essence, a strict mathematical formalism applied to the description of variables (usually quantitative ones) that can – at least in principle – be measured by mechanical instruments. In such a language, what is the definition of an agent? Of an act? In contrast to previous approaches, which attempt to discriminate between agent and non-agent systems, we pursue a more Dennettian approach that attempts only to characterise the explanatory logic of intentional (agentive) interpretations of a physical system; we wish to do so purely in terms of the formal relations that hold between variables in a dynamical system or stochastic process. Our approach is straightforward: we use Pearl’s causal formalism to identify physical variables at the causal boundary between ‘agent’ and ‘environment’, and identify these with variables in Bayesian decision theory; this provides a rigorous bridge between mathematical models of physics and mathematical models of rational decision-making. |
---|---|
ISSN: | 1059-7123 1741-2633 |
DOI: | 10.1177/1059712317700501 |