Loading…
A Comparison of Rule-Based and Machine Learning Models for Classification of Human Factors Aviation Safety Event Reports
There is growing interest in the study and practice of applying data science (DS) and machine learning (ML) to automate decision making in safety-critical industries. As an alternative or augmentation to human review, there are opportunities to explore these methods for classifying aviation operatio...
Saved in:
Published in: | Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2020-12, Vol.64 (1), p.129-133 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is growing interest in the study and practice of applying data science (DS) and machine learning (ML) to automate decision making in safety-critical industries. As an alternative or augmentation to human review, there are opportunities to explore these methods for classifying aviation operational events by root cause. This study seeks to apply a thoughtful approach to design, compare, and combine rule-based and ML techniques to classify events caused by human error in aircraft/engine assembly, maintenance or operation. Event reports contain a combination of continuous parameters, unstructured text entries, and categorical selections. A Human Factors approach to classifier development prioritizes the evaluation of distinct data features and entry methods to improve modeling. Findings, including the performance of tested models, led to recommendations for the design of textual data collection systems and classification approaches. |
---|---|
ISSN: | 1071-1813 2169-5067 |
DOI: | 10.1177/1071181320641034 |