Loading…
Three-dimensional elastoplastic damage concrete model by dissipation-based arc-length method
This article presents a three-dimensional isotropic elastoplastic damage model for concrete structures. The plasticity of concrete is described by a nonassociated flow rule, using a three-parameter yield function as well as a modified Drucker–Prager-type potential. The damage of concrete is seen as...
Saved in:
Published in: | Advances in structural engineering 2016-12, Vol.19 (12), p.1949-1962 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a three-dimensional isotropic elastoplastic damage model for concrete structures. The plasticity of concrete is described by a nonassociated flow rule, using a three-parameter yield function as well as a modified Drucker–Prager-type potential. The damage of concrete is seen as a contribution work of tensile and compressive damage, with the evolution histories driven by the internal tensile and compressive variables, respectively. The iterative solution of plasticity and damage is carried out according to the concept of operator split, where a return-mapping algorithm as well as a substepping strategy is used. The consistent tangent stiffness considering the recursive relationship among substeps is derived. For the solution of global iteration, a dissipation-based arc-length method is employed. Good agreements are found in comparisons between numerical results and experimental data on both elementary and structural levels. Furthermore, the sensitivities of parameters that control strain softening are investigated. |
---|---|
ISSN: | 1369-4332 2048-4011 |
DOI: | 10.1177/1369433216649391 |