Loading…

Buildings with environmental quality management, part 3: From log houses to environmental quality management zero-energy buildings

The discussion in this article starts in the 1920s, that is, at the time of the humble beginnings of building science and brings us to 2020s with the development of net-zero energy buildings. The knowledge accumulated by explaining observed failures in the practice of construction slowly formed a ba...

Full description

Saved in:
Bibliographic Details
Published in:Journal of building physics 2019-03, Vol.42 (5), p.672-691
Main Authors: Yarbrough, David W, Bomberg, Mark, Romanska-Zapala, Anna
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The discussion in this article starts in the 1920s, that is, at the time of the humble beginnings of building science and brings us to 2020s with the development of net-zero energy buildings. The knowledge accumulated by explaining observed failures in the practice of construction slowly formed a basis for moving toward a predictive capability and to an integration of modeling and testing. Furthermore, we have learned that interactions between energy efficiency, indoor environmental quality, and moisture management are so critical that the three issues must be considered simultaneously. Effectively, a change in the low energy is needed to ensure durability of materials and cost considerations for these buildings. At this stage, one could observe a clear change in the mind-set of the scientific community. Forty years after construction of the first 10 passive homes, we made a shocking observation—an adequate technology has been developed, but our lack of vision prevents effective use of this technology. Again, we need to modify our vision and change the design paradigm to balance comfort, building durability, and cost-effectiveness. If the quest for sustainable buildings is our ultimate objective, then we should learn more from the surrounding nature; termites appear to master the art of hygrothermal control better than humans because they can optimize transient conditions to maintain a stable interior comfort zone. Thus, in the article to follow a new compact building envelope design package is proposed, applicable to different climates with specific modifications of critical hygrothermal material properties. This approach is called the Environmental Quality Management. This will be the second step for a building science (physics) needed to become a leading force in the transition to sustainable built environments.
ISSN:1744-2591
1744-2583
DOI:10.1177/1744259118786758