Loading…

Drug Release and Pharmacokinetic Evaluation of Novel Implantable Mometasone Furoate Matrices in Rabbit Maxillary Sinuses

Background Intranasal corticosteroid sprays (INCSs) used to treat chronic rhinosinusitis are suboptimal due to limited penetration into the middle meatus, rapid clearance, and poor patient compliance. A bioresorbable drug matrix, developed with the XTreoTM drug delivery platform, may overcome the li...

Full description

Saved in:
Bibliographic Details
Published in:American journal of rhinology & allergy 2022-03, Vol.36 (2), p.198-206
Main Authors: You, Changcheng, Tseng, Ling-Fang, Pappas, Alexander, Concagh, Danny, Kuang, Yina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Intranasal corticosteroid sprays (INCSs) used to treat chronic rhinosinusitis are suboptimal due to limited penetration into the middle meatus, rapid clearance, and poor patient compliance. A bioresorbable drug matrix, developed with the XTreoTM drug delivery platform, may overcome the limitations of INCS by providing continuous dosing over several months. Objective To evaluate the in vitro drug release and in vivo pharmacokinetics of novel mometasone furoate (MF) matrices in a rabbit dorsal maxillary osteotomy model. Methods XTreoTM matrices were formulated to consistently elute MF for up to 6 months. Matrices were surgically placed bilaterally into the maxillary sinuses of New Zealand White (NZW) rabbits. Tissue and plasma MF concentrations were measured to assess the in vivo drug delivery. The in vivo and in vitro drug release kinetics of the matrices were quantified and compared to those of rabbits receiving daily Nasonex® MF nasal sprays. Results XTreoTM matrices self-expanded upon deployment to conform to the irregular geometry of the maxillary sinus cavities in the NZW rabbits. Sustained release of MF was demonstrated in vitro and in vivo for 2 MF matrices of distinct release durations and an in vitro–in vivo correlation was established. Therapeutic levels of MF in local tissues were measured throughout the intended dosing durations. In contrast to the variable peaks and troughs of daily nasal sprays, sustained dosing via a single administration of MF matrices was confirmed by quantifiable plasma MF concentrations over the intended dosing duration. Conclusion The XTreoTM MF matrices provided targeted and efficient dosing to local sinus tissues that was superior to INCS. Sustained drug release was confirmed both in vitro and in vivo. The novel XTreoTM technology may provide precisely tuned, long-lasting drug delivery to sinus tissues with a single treatment.
ISSN:1945-8924
1945-8932
DOI:10.1177/19458924211039197