Loading…

The Fully Human Anti-CD47 Antibody SRF231 Has Dual-Mechanism Antitumor Activity Against Chronic Lymphocytic Leukemia (CLL) Cells and Increases the Activity of Both Rituximab and Venetoclax

Background CD47 is over-expressed by many tumor types and protects tumor cells from destruction via tumor-intrinsic and -extrinsic means. The fully human anti-CD47 monoclonal antibody (mAb) SRF231 has previously been shown to block the “don't eat me” CD47/signal regulatory protein alpha (SIRPα)...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2018-11, Vol.132 (Supplement 1), p.4393-4393
Main Authors: Valentin, Rebecca, Peluso, Marisa O., Lehmberg, Timothy Z., Adam, Ammar, Zhang, Li, Armet, Caroline M., Guerriero, Jennifer L., Lee, Benjamin H., Palombella, Vito J., Holland, Pamela M., Paterson, Alison M., Davids, Matthew S.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background CD47 is over-expressed by many tumor types and protects tumor cells from destruction via tumor-intrinsic and -extrinsic means. The fully human anti-CD47 monoclonal antibody (mAb) SRF231 has previously been shown to block the “don't eat me” CD47/signal regulatory protein alpha (SIRPα) interaction and induce macrophage-mediated phagocytic uptake of CD47-expressing tumor cells, either alone or in the presence of anti-CD20 mAb. Furthermore, SRF231 inhibited tumor growth in preclinical models of aggressive non-Hodgkin lymphoma (Holland P, et al. ASH 2016). Here, we explored the activity of SRF231 against CLL cells for the first time, both as monotherapy and in combination with rituximab or venetoclax (VEN). Methods Peripheral blood mononuclear cells from 24 CLL patients were evaluated for CD47 surface expression by flow cytometry. Primary CLL or Jurkat target cells were treated ex vivo with SRF231 or isotype control and evaluated in phagocytosis and cell death assays. Human monocyte-derived macrophages were cocultured with fluorescently-labeled target tumor cells and exposed to SRF231 and/or rituximab (commercial supply). BH3 profiling was performed by gently permeabilizing primary CLL cells and measuring the release of cytochrome C (Cyto-C) in response to BH3-only peptides by flow cytometry. Priming for apoptosis was measured by Cyto-C release in response to BIM BH3 peptide, and pro-survival protein dependencies were measured by response to specific BH3-only sensitizer peptides. Statistical analyses were by unpaired and paired t-test with a two-tailed nominal p ≤ 0.05 considered as significant. In vivo antitumor activity was assessed using tumor xenograft studies in CB17 SCID mice. Mice with established, subcutaneous Ri-1 tumors were randomized and treated with either isotype control, SRF231, VEN (Medkoo), or combination of SRF231 and VEN. Results CD47 was expressed in all primary CLL cells (n = 24, median mean fluorescence intensity [MFI] 7913, range 3575-18,329) with a slightly higher expression in unmutated CLL (U-CLL) vs mutated CLL (M-CLL) samples (U-CLL median MFI = 9106, n = 8 vs M-CLL, median MFI = 7713, n = 14, 2 unknown, p = 0.047). Primary CLL cells were significantly more susceptible to phagocytosis upon ex vivo treatment with SRF231 in combination with rituximab (median % increase in phagocytosis over isotype control of 32.28% in the combination vs 11.78% with rituximab alone, n = 24, p < 0.0001). Upon coculture of Jurkat cells with mac
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-110181