Loading…
Persistence of CRISPR/Cas9-Edited Hematopoietic Stem and Progenitor Cells and Reactivation of Fetal Hemoglobin in Nonhuman Primates
Beta-thalassemia and sickle cell disease are monogenic disorders that are currently treated by allogeneic bone marrow (BM) transplantation although the challenges of finding a suitable matched-donor and the risk of graft vs host disease have limited the adoption of this otherwise curative treatment....
Saved in:
Published in: | Blood 2018-11, Vol.132 (Supplement 1), p.806-806 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beta-thalassemia and sickle cell disease are monogenic disorders that are currently treated by allogeneic bone marrow (BM) transplantation although the challenges of finding a suitable matched-donor and the risk of graft vs host disease have limited the adoption of this otherwise curative treatment. A potentially promising approach for hemoglobinopathies aims to reactivate fetal hemoglobin (HbF) as a substitute for defective or absent adult hemoglobin by modifying the patient's own hematopoietic stem and progenitor cells (HSPCs). Here, we evaluated CRISPR/Cas9-induced small deletions in HSPCs that are associated with hereditary persistence of fetal hemoglobin (HPFH) using our nonhuman primate (NHP) stem cell transplantation and gene therapy model.
The CRISPR/Cas9 nuclease platform was employed to recapitulate a natural genetic alteration identified in individuals with HPFH, consisting of a 13-nucleotide (nt) deletion in the gamma globin gene promoter. A first cohort of three rhesus macaques received 70-75% HPFH-edited BM-derived CD34+ HSPCs. All animals showed rapid hematopoietic recovery and peripheral blood (PB) editing levels stabilized at 12-30% for at least a year post transplantation (Figure 1). HbF production, determined by circulating F-cells, persisted at frequencies of 8-22% and correlated with in vivo PB editing. Robust engraftment of gene-edited HSPCs in the BM compartment was observed in all animals, with no measurable off-target activity or clonal expansion.
We have recently shown, that the CD34+CD90+CD45RA- phenotype is exclusively required for short- and long-term multilineage reconstitution, significantly reduces the target cell number for gene therapy/editing and is conserved between human and NHP hematopoietic cells (Radtke et al., STM, 2017). To explore this cell population further, we transplanted a second cohort of three animals by sort-purifying and solely editing this hematopoietic stem cell (HSC)-enriched CD34+CD90+CD45RA- phenotype, thus reducing the number of target cells by over 10-fold without impacting hematopoietic recovery, engraftment, or HbF reactivation. In vivo levels of gene-edited PB started at less than 5% because of the high number of co-infused unmodified progenitor cells, but rapidly increased to about 50% within 1 week (Figure 1) and stabilized at levels comparable to the CD34 cohort. This data supports our interpretation that CD34+CD90+CD45RA- cells are the main cell population relevant for long-term reconstituti |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2018-99-112996 |