Loading…

GATA2-Dependent Developmental and Regenerative Networks

Coding and regulatory human GATA2 mutations that deregulate protein expression and/or function cause immunodeficiency that often progresses to MDS/AML (McReynolds et al., 2018). In the mouse, decreased GATA2 expression impairs hematopoietic stem/progenitor cell (HSPC) genesis and function (de Pater...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2019-11, Vol.134 (Supplement_1), p.1182-1182
Main Authors: Soukup, Alexandra, Johnson, Kirby D, Conn, Daniel J, Shishkova, Evgenia, Katsumura, Koichi Ricardo, Liu, Peng, Ranheim, Erik A., Calvo, Katherine R., Hsu, Amy P., Holland, Steven M., Coon, Joshua J, Keles, Sunduz, Bresnick, Emery H
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coding and regulatory human GATA2 mutations that deregulate protein expression and/or function cause immunodeficiency that often progresses to MDS/AML (McReynolds et al., 2018). In the mouse, decreased GATA2 expression impairs hematopoietic stem/progenitor cell (HSPC) genesis and function (de Pater et al., 2013; Gao et al., 2013; Tsai et al., 1994). While prior studies demonstrated Gata2 +9.5 and -77 enhancers are essential for HSC emergence (+9.5) and/or progenitor cell fate (+9.5 and -77) (Johnson et al., 2012; Johnson et al., 2015; Mehta et al., 2017) and hematopoietic regeneration (+9.5) (Soukup et al., 2019), the mechanisms mediating these processes are not completely established. The -77 enhancer is required for fetal liver progenitors to undergo erythroid, megakaryocytic, granulocytic and monocytic differentiation. By contrast, progenitors with a -77 homozygous deletion (-77-/-) exhibit a predominant monocytic cell fate and generate macrophages ex vivo (Johnson et al., 2015). Using multiomic and single-cell strategies, we asked how this enhancer orchestrates a balance between fate-promoting and -suppressing circuitry in cell populations and single cells. Quantitative proteomics was conducted to discover the -77-regulated protein ensemble conferring multiple fates in a myeloid progenitor population [Common Myeloid Progenitor (CMP) and Granulocyte-Monocyte Progenitor (GMP)] from E14.5 fetal liver of -77+/+ and -77-/- mouse embryos. -77-/- progenitors exhibited decreased levels of GATA2 (4.7-fold) and proteins generated from GATA2 target genes (GATA1: 51-fold; HDC: 52-fold). The 202 proteins upregulated in -77-/- progenitors highlighted immune and inflammatory mechanisms, while the 232 downregulated proteins were linked to erythroid, megakaryocyte and granulocyte biology, indicative of loss of these fate potentials. Innate immune machinery was upregulated in -77-/- vs. -77+/+ progenitors, including interferon (IFN) signaling pathway components such as the IFN-inducible transcription factor and critical monocytic differentiation determinant Interferon Regulatory Factor 8 (IRF8; 2.7 fold higher) (Kurotaki et al., 2013) and diverse pathogen sensors. Expressing GATA2 at physiological levels in -77-/- progenitors normalized the aberrant transcriptome. Since -77 deletion downregulated Gata2 and upregulated Irf8, we tested whether this opposing expression pattern occurs in distinct and/or identical cells in the population using single cell transcriptomics. -7
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-126875