Loading…
Higher Stability of Mutant IDH1/2 mRNA As Compared to Wild-Type mRNA in Patients with Acute Myeloid Leukemia
Introduction: Isocitrate dehydrogenase 1 and 2 (IDH1/2) are homodimeric enzymes that play an important role in cellular metabolism, epigenetic regulation, and DNA repair. Early studies suggested that mutations in IDH1/2 were loss of function mutations associated with a tumor suppressor function. How...
Saved in:
Published in: | Blood 2019-11, Vol.134 (Supplement_1), p.2730-2730 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction: Isocitrate dehydrogenase 1 and 2 (IDH1/2) are homodimeric enzymes that play an important role in cellular metabolism, epigenetic regulation, and DNA repair. Early studies suggested that mutations in IDH1/2 were loss of function mutations associated with a tumor suppressor function. However, biallelic mutations are extremely rare, and studies demonstrate that mutant IDH1/2 enzymes are responsible for NADPH-dependent reduction of αKG to the oncometabolite d-2-hydroxyglutarate (D2HG), suggesting an oncoprotein. Cellular RNA levels are tightly regulated by very complex cellular processes, and the regulation of mutant mRNA in cancer cells is rarely studied. We explored the effects of IDH1/2 mutations on mRNA levels in patients with Acute myeloid leukemia (AML). Using next generation sequencing (NGS) and variant allele frequency (VAF) of mutant RNA, we compared relative mutant mRNA or variant allele frequency (RNA-VAF) with variant allele frequency of mutant DNA (DNA-VAF) in the same samples from patients with AML. Methods: RNA and DNA were extracted from 48 bone marrow and peripheral blood samples from patients with confirmed AML, including 12 patients with IDH1 mutations, 2 with IDH2 mutation and 34 samples from AML without IDH1/2 mutations. Samples were collected pretherapy as well as while on therapy. We sequenced the DNA using 177 gene panel and the RNA using 1408 gene panel. The DNA sequencing is based on Single Primer Extension (SPE) library preparation with unique molecular identifier (UMI) (Qiagen, Germantown, MD). Average coverage of DNA sequencing was >1000X. The RNA sequencing is based on hybrid capture and the number of reads ranged from 5 to 10 million. Sequencing data of DNA is analyzed using the DRAGEN Platform. Sequence duplicates were removed before calculating VAF. The RNA sequencing data is analyzed using Illumina basespace. RNA VAF is calculated also after removing duplicates using Isaac variant caller. Only mutations detected by both DNA and RNA variant callers are compared. Results: A total of 176 mutations were detected using the DNA panel and 122 mutations using the RNA panel. Some mutations were called by RNA variant caller, but not by DNA variant caller and vice versa. All mutations detected in IDH1 and IDH2 were detected in both DNA and RNA. When the IDH1/2 mutations are considered (#14), the VAF in RNA (median: 41%, range: 13%-74%) was significant higher (P=0.006, Wilcoxon matched pairs test ) as compared with DNA (medi |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-127383 |