Loading…
Single-Cell Transcriptional Profiling of Zebrafish Hematopoiesis Offers Insight into Early Lymphocyte Development and Reveals Novel Immune Cell Populations
The advent of single-cell RNA sequencing (scRNA-seq) has greatly expanded our appreciation for cell state diversity beyond classical developmental hierarchies and simple population subsets. In particular, rich transcriptional heterogeneity has been observed within immune cell populations leading to...
Saved in:
Published in: | Blood 2021-11, Vol.138 (Supplement 1), p.4294-4294 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The advent of single-cell RNA sequencing (scRNA-seq) has greatly expanded our appreciation for cell state diversity beyond classical developmental hierarchies and simple population subsets. In particular, rich transcriptional heterogeneity has been observed within immune cell populations leading to the identification of novel cell types. Except for a few notable exceptions, intensive work in this area has largely been confined to mammals. Much of the transcriptional profiling of blood cell development in zebrafish has failed to capture early stages of lymphocyte development as the majority of research has not included thymus datasets or captured sufficient marrow B cells to explore developmental trajectories. To gain insight into T and B cell development in the zebrafish and immune cell diversity more broadly, we performed scRNA-seq using 10x Genomics Next GEM technology on adult zebrafish kidney marrows (n = 5 biological replicates) in addition to whole juvenile thymi at 4 weeks post-fertilization (wpf) (n = 4 technical replicates) and whole adult thymi at 3-4 months post-fertilization (n = 4 biological replicates). After filtering out low quality cellular barcodes, 34,492 kidney marrow cells and 35,268 thymus cells remained for analysis. With respect to T cell development, we identified putative early thymic progenitors from their clustering with hematopoietic stem and progenitor cells and shared transcriptional signatures, including the enrichment of CD34, CSF1R, FLI1, and DNMT3B human orthologs. Multiple subsets of thymic and marrow T cells were characterized, including a subset of gamma delta T cells readily identified by their expression of T-cell receptor gamma and delta chain components and expression of a SOX13 ortholog in addition to a Th2-like population expressing IL4, IL13, and GATA3 orthologs. Among other immune cell populations, rich transcriptional diversity was present. Two distinct populations of B cells, largely mutually exclusive for ighd and ighz expression (dual detection |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2021-146374 |