Loading…

Targeting Polo-like Kinase 4 Triggers Polyploidy and Apoptotic Cell Death in TP53-Mutant Acute Myeloid Leukemia

Background: TP53 mutations in acute myeloid leukemia (AML) are associated with complex karyotype, high incidence of minimal residual disease (MRD), and high risk of relapse (Döhner et al., 2017; Giacomelli et al., 2018). While numerous novel treatment regimens, including the combination of the BCL2...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2021-11, Vol.138 (Supplement 1), p.1167-1167
Main Authors: Ayoub, Edward, Heinz Montoya, Rafael, Mohanty, Vakul, Walter, Wencke, Patsilevas, Tallie, Issa, Ghayas C., Borthakur, Gautam, Chen, Ken, Konopleva, Marina, Navin, Nicholas, Haferlach, Torsten, Andreeff, Michael
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: TP53 mutations in acute myeloid leukemia (AML) are associated with complex karyotype, high incidence of minimal residual disease (MRD), and high risk of relapse (Döhner et al., 2017; Giacomelli et al., 2018). While numerous novel treatment regimens, including the combination of the BCL2 inhibitor venetoclax (VEN) and hypomethylating agents (HMA), have emerged as partially effective treatments and resulted in higher remission rates in patients with TP53-mutant AML, full clearance of the mutant TP53 clone is rarely achieved and the majority of patients relapse (Short et al., 2021; Takahashi et al., 2016). The mechanisms responsible for response and relapse in TP53-mutant AML remain unclear and investigating novel mechanisms is critical to develop more effective therapies. Results: In order to shed light on the defective p53 signaling pathways underlying TP53 mutant AML, and to better understand mechanisms of resistance, we performed RNA-sequencing (RNA-seq) on FACS-sorted subpopulations using samples collected from TP53-mutant or TP53-wt high-risk AML patients. Samples were collected at diagnosis (DX) and post-treatment (POSTTX) (total number of samples n= 67, TP53-mutant=36, TP53-wt=31). Diagnostic samples include bulk AML, leukemic stem cells (LSCs), and post-treatment samples including bulk mononuclear cells (MNCS) and patient specific MRD (total n= 67, DX_Bulk=15, DX_LSCs=15, POSTTX_MNCs=14, POSTTX_MRD=23). Differential gene expression analysis of TP53-mutant samples indicates a positive enrichment of the following pathways: G2/M checkpoint, MYC targets, and mitotic spindle, among others. We focused here on genes associated with TP53-mutant AML enriched pathways, and identified a key regulator of centriole biogenesis, one of E2F targets: Polo-like kinase 4 (PLK4) as a potential target highly expressed in TP53-mutant AML samples . Previous publications showed that PLK4 is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing (Fischer et al., 2014; Li et al., 2005). Here we show that TP53-mutant AML samples lack the p53-dependent PLK4 repression and have higher levels of PLK4 compared to TP53-wt AML. To test the rigor of this finding, we interrogated the Munich Leukemia Laboratory (MLL) data base and analyzed their clinically annotated (e.g. karyotype, survival, complete blood counts, previous treatments ... etc) RNA-seq dataset of 726 AML samples (TP53-mutant=72, TP53-wt=654). TP53-mutant AML samples consistently showed
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-153436