Loading…

CD72 Nanobody-Based CAR-T Cells Have Potent Anti-Tumor Efficacy in B Cell Malignancies

Background: Approximately 50% of pediatric B-ALL patients treated with clinically approved CD19-targeting CAR-T cells do not remain in remission one year after therapy. CD22-targeting CAR-T cells appear to be curative in only a small fraction of CD19-refractory patients and this therapeutic strategy...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2021-11, Vol.138 (Supplement 1), p.1717-1717
Main Authors: Nix, Matthew A, Temple, William C, Karlon, William, Wang, Donghui, Phojanakong, Paul, Steri, Veronica, Hann, Byron, Wiita, Arun P
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Approximately 50% of pediatric B-ALL patients treated with clinically approved CD19-targeting CAR-T cells do not remain in remission one year after therapy. CD22-targeting CAR-T cells appear to be curative in only a small fraction of CD19-refractory patients and this therapeutic strategy is primarily used as a bridge to stem cell transplant. Additional immunotherapeutic targets thus remain urgently needed. Our laboratory recently used cell surface proteomics to identify CD72 as a B-cell specific marker especially upregulated on poor prognosis, KMT2A/MLL-rearranged B-ALL (Nix et al., Cancer Discovery (2021)). In this published work, we used a best-in-class nanobody library displayed on yeast to develop binders to CD72. We demonstrated for the first time that fully synthetic nanobodies can generate CAR-T cells that are highly potent in vitro and in vivo. While we previously focused on these “nanoCARs” in KMT2A/MLLr B-ALL, in this follow-up study we aimed to 1) further expand our nanoCAR indications to other CD72-expressing B-cell malignancies; 2) biophysically characterize our synthetic nanobodies; 3) evaluate the potential for further humanization of the nanobody binder amino acid sequence while retaining anti-tumor efficacy; and 4) characterize the potency and T-cell immunophenotypes in the context of our lead nanobody binder (“NbD4”) placed on different CAR backbones. Methods: Flow cytometry of primary patient samples for CD72 was performed in a CLIA-certified laboratory. NbD4 nanobody was recombinantly expressed in E. coli and biolayer interferometry was used to determine the binding affinity to recombinantly-expressed CD72 extracellular domain. CAR-T cells were generated from peripheral blood donor CD4+ and CD8+ cells (1:1) ratio via lentiviral transduction. In vitro cytotoxicity assays were performed at a range of effector:tumor ratios. In vivo studies were performed in human cell line orthotopic xenografts in NSG mice. 1e6 luciferase-labeled Jeko cells were implanted at Day 0 followed by administration of 4e6 CAR-T cells at Day 6. Tumor burden was assessed by bioluminescence. Results: Flow cytometry on primary non-Hodgkin B-cell lymphoma obtained from fine needle aspiration biopsy (n = 5) confirmed CD72 surface expression (not shown), consistent with RNA-seq across larger cohorts. Biolayer interferometry demonstrated that NbD4 bound with surprisingly low affinity to recombinant CD72 (K D ~800 nM) (Fig. 1A), with both slow on rate (k on 8.3
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-153935