Loading…

A Phase I/II, Intra-Patient Dose-Escalation Study of Bitopertin, a Selective Inhibitor of GlyT1 and Heme Synthesis, for Steroid-Refractory Diamond-Blackfan Anemia

Background: Diamond-Blackfan anemia (DBA) is a heritable bone marrow failure disorder characterized by macrocytic anemia with reticulocytopenia and bone marrow erythroid hypoplasia, usually presenting within the first two years of life. Treatment consists of systemic corticosteroids. Treatment failu...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2023-11, Vol.142 (Supplement 1), p.1086-1086
Main Authors: Young, David J., Machado, Tania Rene, Doty, Raymond T., Wu, Colin O., Abkowitz, Janis L., Savage, William, Dunbar, Cynthia E.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Diamond-Blackfan anemia (DBA) is a heritable bone marrow failure disorder characterized by macrocytic anemia with reticulocytopenia and bone marrow erythroid hypoplasia, usually presenting within the first two years of life. Treatment consists of systemic corticosteroids. Treatment failure or steroid intolerance occurs in approximately half of all cases, necessitating chronic transfusions, which carry the risks of iron overload and infections. Hematopoietic cell transplant remains the sole curative therapy for DBA. In cases where a causative mutation can be identified, with rare exceptions, the affected genes encode ribosomal proteins (RPs), defining DBA as prototypic haploinsufficient ribosomopathy. Erythrocyte hemoglobinization requires balanced heme synthesis and globin translation. Various in vitro and animal models suggest that RP insufficiency results in reduced ribosomal biogenesis, disrupting this balance and leading to excess of heme, resulting in toxicity to developing erythroid cells and premature termination of erythroid differentiation. Bitopertin is an investigational, orally administered, inhibitor of the GlyT1 glycine transporter. Outside the central nervous system (CNS), GlyT1 is expressed almost exclusively on developing erythrocytes. By reducing intracellular glycine, a rate-limiting substrate for heme synthesis, bitopertin slows heme synthesis and thus we hypothesize rebalances hemoglobin synthesis. In preclinical DBA models, bitopertin rescues erythropoiesis. The drug was originally developed for CNS indications, and has been shown to exhibit a favorable safety profile in prior studies with cumulative enrollment of over 4,000 patients and healthy volunteers. It is currently under clinical investigation for the treatment of erythropoietic protoporphyria. Study Design and Methods: This is a phase I/II, intra-patient dose-escalation study of bitopertin for steroid-refractory DBA, conducted at the National Institutes of Health (NIH) Clinical Center in Bethesda, Maryland. Subjects visit the NIH for initial evaluation and eligibility assessment and at the primary endpoint, with interim follow-up conducted via telehealth and local laboratory assessments. Subjects must be 18 years of age or and older, diagnosed with DBA and with clinically significant anemia (hemoglobin < 9/dL and/or requiring 2 units PRBC per 8 weeks). They must have relapsed and/or steroid refractory disease or be intolerant of systemic steroids, and be without s
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-173821