Loading…
Multiomic Single-Cell Sequencing May Distinguish BCR-ABL-Mutated Acute Myeloid Leukemia (AML) from Blast Crisis Chronic Myelogenous Leukemia (BC-CML)
Introduction The existence of BCR-ABL+ AML as an entity distinct from BC-CML is controversial. The WHO recently recognized BCR-ABL+ AML, but with the caveat that it is poorly characterized (Khoury, 2022). Clinically, BCR-ABL+ AML is associated with high risk of relapse (Neuendorff, 2018). Further, a...
Saved in:
Published in: | Blood 2023-11, Vol.142 (Supplement 1), p.4334-4334 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction
The existence of BCR-ABL+ AML as an entity distinct from BC-CML is controversial. The WHO recently recognized BCR-ABL+ AML, but with the caveat that it is poorly characterized (Khoury, 2022). Clinically, BCR-ABL+ AML is associated with high risk of relapse (Neuendorff, 2018). Further, acquired BCR-ABL mutations have been identified as a cause of relapse on FLT3 inhibitors (McMahon, 2019). We hypothesize that BCR-ABL+ AML can be distinguished as a distinct biologic entity from BC-CML by the observation of BCR-ABL as a sub-clonal rather than a founder mutation in leukemogenesis.
Methods
To test the utility of multi-omic single cell (SC) sequencing in determining tumor phylogeny and identification of BCR-ABL+ AML vs BC-CML, we analyzed bone marrow samples from 4 patients (pts): 1 relapsed AML with clinical development of a new BCR-ABL fusion at the time of relapse, and 3 newly diagnosed BC-CML (2 myeloid, 1 lymphoid). We performed high-throughput SC DNA sequencing with simultaneous cell-surface immunophenotyping and targeted RNA sequencing for BCR-ABL fusion proteins (Mission Bio Tapestri). All SC DNA sequencing included pt-specific primers for BCR-ABL DNA breakpoints, which were previously identified using nanopore-based technology for sequencing long strands of DNA.
Results
We analyzed 19,197 single cells (median 1995 cells/pt). Multi-omic SC technology differentiated BCR-ABL+ AML from BC-CML by confirming the fusion arose as a branch mutation from a founding leukemic clone and was not present in all leukemic populations.
In Patient 1, who was sampled at time of AML relapse, we identified pathogenic FLT3 ITD and NRAS Q61K mutations. FLT3 co-mutated with either the BCR-ABL DNA breakpoint or NRAS in the same single cell and clone, while the BCR-ABL DNA breakpoint and NRAS were not co-mutated. Phylogenetic reconstruction determined FLT3 to be a founding mutation, which later branched into FLT3/BCR-ABL and FLT3/ NRAS co-mutant subclones. Further, the FLT3-ITD/BCR-ABL and FLT3-ITD/ NRAS subclones had distinct immunophenotypes. Blasts harboring the BCR-ABL DNA breakpoint were predominantly identified in the CD117+/CD33+ population (60.2% of cells) compared to CD34+ (16.4% of cells, p |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2023-182454 |