Loading…
Ubiquitin-Mediated Degradation of MORF4L1 By FBXO11 Suppresses Cholesterol Biosynthesis in T Cell Acute Lymphoblastic Leukemia
The substrate receptor of SKP1-Cullin1-FBOX complex, FBXO11, is frequently mutated in both diffuse large B cell lymphoma and acute myeloid leukemia, and typically functions as a tumor suppressor by targeting substrates for ubiquitin-mediated degradation. Although FBXO11 is also mutated in human T-ce...
Saved in:
Published in: | Blood 2023-11, Vol.142 (Supplement 1), p.4148-4148 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The substrate receptor of SKP1-Cullin1-FBOX complex, FBXO11, is frequently mutated in both diffuse large B cell lymphoma and acute myeloid leukemia, and typically functions as a tumor suppressor by targeting substrates for ubiquitin-mediated degradation. Although FBXO11 is also mutated in human T-cell acute lymphoblastic leukemia (T-ALL) cell lines, the underlying mechanism in T-ALL development remains to be established. Here, we identified that both endogenous activation and exogenous overexpression of FBXO11 could suppress the growth of T-ALL cell in vitro and in vivo. While conversely, loss of FBXO11 accelerates the T-ALL cell proliferation. Transcriptomic and total quantitative proteomic analyses in FBXO11-depleted T-ALL cells reveal activation of the cholesterol biosynthesis pathway with accumulation of intracellular cholesterol levels. Importantly, we identified a chromatin regulator MORF4L1, mortality factor 4 like protein 1, as a functional substrate of FBXO11 in T-ALL cells.
We first observed that FBXO11 exhibited frequent copy number alterations in T-ALL cell lines and in patient cohorts from public datasets. Moreover, by CRISPR SAM (Synergistic Activation Mediator) endogenous activation and lentiviral mediated gene overexpression, we validated that FBXO11 played a role in inhibiting tumor cell proliferation in T-ALL cells both in vitro and in vivo. Conversely, loss of FBXO11 accelerated T-ALL cell proliferation. Taken together, our results suggest that FBXO11 functions as a tumor suppressor in T-ALL. Mechanistically, we uncovered that the absence of FBXO11 could activate the cholesterol synthesis signaling pathway from both the RNA-seq and the TMT proteomic analysis in FBXO11-depleted MOLT4 cells compared to control cells. Concordantly, loss of FBO11 resulted in the accumulation of intracellular cholesterol level, suggesting that FBXO11 may suppress cholesterol biosynthesis in T-ALL cells.
To understand how FBXO11 controls cholesterol biosynthesis, we further identified the potential substrates from the combined quantitative transcriptome and proteome analysis. MORF4L1, a chromatin modifier involved in histone acetylation, was identified as a key substrate of FBXO11 based on its upregulation at the protein level in FBXO11-depleted cells. Moreover, our data suggest MORF4L1 is a regulator of cholesterol biosynthesis in T-ALL. The inhibition of MORF4L1 suppressed the cellular growth of T-ALL cell lines, and led to the downregulation of the expressi |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2023-184388 |