Loading…
Idasanutlin and Navitoclax Induce a Synergistic p53-Dependent Apoptotic Cell Death in T-Cell Acute Lymphoblastic Leukemia
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with a five-year event-free survival rate that declines with age. Existing therapies for T-ALL, particularly in adults, are intensive and poorly tolerated, with high rates of of treatment-related morbidity and mortal...
Saved in:
Published in: | Blood 2023-11, Vol.142 (Supplement 1), p.1450-1450 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with a five-year event-free survival rate that declines with age. Existing therapies for T-ALL, particularly in adults, are intensive and poorly tolerated, with high rates of of treatment-related morbidity and mortality and a high frequency of relapse. In T-ALL, activating Notch pathway mutations are common and thought to induce transformation in part through activation of c-Myc. Typically, increased expression of c-Myc induces apoptosis through the p19(ARF)-Mdm2-p53 tumor suppressor pathway. Unsurprisingly, over 70% of T-ALL cases have inactivating mutations in CDKN2A (p19Arf). However, greater than 95% of primary and 75% of relapsed T-ALL cases maintain wild type p53.
We hypothesized that MDM2 inhibition would lead to T-ALL cell apoptosis by bypassing the loss of ARF. We reported in a previous ASH abstract initial studies evaluating the MDM2 inhibitor idasanutlin in the context of T-ALL. We observed that T-ALL patient-derived xenograft (PDX) lines treated in vitro showed modest induction of apoptosis. Additionally, we observed upregulation of pro-apoptotic p53 target genes including Bax and Puma1, leading us to hypothesize that inhibition of pro-survival BH3 domain proteins Bcl-2, Bcl-xL, and Bcl-W by navitoclax (ABT-263) would synergize to enhance apoptosis. In vitro treatment of a panel of PDX lines with combined therapy led to robust cell death with strong induction of pro-apoptotic p53 targets in all lines. In vivo, we assessed the response of four T-ALL xenografts to dual treatment. All showed a significant reduction of tumor burden compared to the most efficacious single therapy and evidence of synergy in all tested lines, as evaluated by a modified Bliss Independence test analyzing average daily change in tumor burden. Overall survival was significantly increased in the combination treatment group.
We report here further mechanistic characterization of idasanutlin and navitoclax dual therapy in the context of T-ALL, as well as several therapeutically-oriented comparisons. While our initial studies used navitoclax due to prior work showing that T-ALL frequently expresses and is dependent on Bcl-xL ( Chonghaile et al., 2014), navitoclax can cause a dose-limiting thrombocytopenia due to on-target Bcl-xL inhibition in circulating platelets. Therefore, we treated our PDX panel with a dose matrix of idasanutlin with navitoclax or venetoclax, which lacks Bcl-xL activity. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2023-190018 |