Loading…

Single Cell RNA Sequencing of Human Platelets Reveals a Stochastic Nature of the Platelet Transcriptome

Background: Platelets are anucleated cells derived from megakaryocytes that regulate blood coagulation and regulate immune function. While less than 10% of circulating platelets contain RNA, they have a demonstrated ability to transcribe their available RNA into protein. While it is known that megak...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2023-11, Vol.142 (Supplement 1), p.280-280
Main Authors: Wolfsberger, Walter Wolfsberger, Oleksyk, Taras, Washington, Anthony
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Platelets are anucleated cells derived from megakaryocytes that regulate blood coagulation and regulate immune function. While less than 10% of circulating platelets contain RNA, they have a demonstrated ability to transcribe their available RNA into protein. While it is known that megakaryocyte transcriptomes are changed in diseased states, it is not known how these changes affect the circulating platelet transcriptome. Furthermore, it has been observed that lung megakaryocytes possess distinct transcriptional profiles compared to those found in bone marrow. Notably, while platelets derived from bone marrow are devoid of MHC class II, lung megakaryocytes exhibit this characteristic. The small percentage of platelets that have RNA has hindered our ability to complete single cell sequencing on these cells. The lack of understanding regarding how disease changes their transcriptome or the heterogeneity of platelets originating from lungs and bone marrow hinders our comprehension of the roles platelets play in hemostasis and immunity. Aims The objective of this study is to single cell sequence human platelets, differentiate the signature of lung and bone marrow megakaryocytes, and profile the transcriptome of healthy human platelets. Methods Blood was taken via venous puncture. Platelets were isolated by slow centrifugation (100g), followed by a second centrifugation at 1200g, and subsequently stained with the RNA dye acridine orange. Platelets were identified by forward and side scatter and sorted based on positive staining for the RNA dye by flow cytometry. cDNA was prepared using the BD Rhapsody system. Files with molecules/cell were produced utilizing BD Rhapsody WTA Analysis Pipeline, employing genecode v43.primary_assembly annotation and GRCh38.primary_ assembly genome. The resulting Molecule Per Cell dense matrix was examined, resulting in 56,724 cells and 43,353 genes to analyze. Data were filtered, removing outliers for total counts, gene counts, and genes counts\cell to unit variance and zero mean. We employed Seurat to detect highly variable genes and regress out (mostly) unwanted sources of variation. Total counts were normalized with target sum of 10,000 counts per cell and log transformed. We computed a neighborhood graph of observations for UMAP. Upon completion, we clustered cells using the Leiden algorithm with low resolution, resulting in 61 detected clusters, and produced UMAP Dimension Reduction to investigate the structure of
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-190625