Loading…

Streptamer Technology for the Assessment of CMVpp65 Specific CD8+ T Cell Frequencies and for the Adoptive T Cell Transfer to Post-Transplant Patients

Cytomegalovirus (CMV) reactivation constitutes a serious complication after allogeneic peripheral blood stem cell transplantation (PBSCT). The frequency of CMVpp65 specific CD8+ T cells is pivotal for the clearance of CMV. CMVpp65 specific CD8+ T cell frequencies can be measured using tetra-, penta-...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2007-11, Vol.110 (11), p.1964-1964
Main Authors: Schmitt, Anita, Yao, Junxia, Einsele, Hermann, Grigoleit, Ulrich, Busch, Dirk, Odendahl, Manuel, Germeroth, Lothar, Tonn, Torsten, Wiesneth, Markus, Rojewski, Markus, Bechter, Clemens, von Harsdorf, Stefanie, Dohner, Hartmut, Bunjes, Donald, Schmitt, Michael
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cytomegalovirus (CMV) reactivation constitutes a serious complication after allogeneic peripheral blood stem cell transplantation (PBSCT). The frequency of CMVpp65 specific CD8+ T cells is pivotal for the clearance of CMV. CMVpp65 specific CD8+ T cell frequencies can be measured using tetra-, penta- and streptamer technologies, streptamers can also be applied therapeutically. In donors, these frequencies might allow us to define the best available donor in addition to the mere serostatus. In the present study we investigated the specificity and sensitivity of all three methods and compared the results to the serostatus. A therapeutical application, i.e. an adoptive transfer of CMV specific CD8+ T cells selected by streptamer technology to a patient with acute lymphatic leukemia suffering from life-threatening CMV antigenemia after allogeneic PBSCT was performed. 23 samples from CMV seropositive healthy volunteers (HV) and 10 samples from CMV seropositive patients before and after allogeneic stem cell transplantation (all HLA-A2 or -B7 positive) were analyzed with tetra-, penta- or streptamer conjugated to PE by flow cytometry. Our lab took part in an inter-lab CMV multimer assay including 20 European countries in the framework of www.kimt.de. For the adoptive T cell transfer a donor leukapheresis was performed followed by an HLA-B7 CMVpp65 streptamer positive selection. The patient received 2Ă—10E5 CMV specific CD8+ T cells per kg body weight as a single transfusion. Optimal amounts of HLA-A2 multimers to stain a pellet of 10E6 cells were 0.44 mcg tetramer, 0.15 mcg pentamer and 0.2 mcg MHC/0.3 mcg streptactin complex. Surprisingly, only in 48% (11/23) seropositive HV CD8+ multimer+ T cells could be detected. The ALL patient developed a foscarvir resistant CMV antigenemia with a maximum of 959/500,000 CMVpp65 positive cells. After a switch to ganciclovir/valganciclovir and an adoptive transfer of CMV specific T cells, the antigenemia was cleared. Valganciclovir was discontinued, but CMV antigenemia remained controlled. The frequency of CMVpp65 specific CD8+ T cells increased dramatically from 0.0% till 19.8%. All of these T cells were donor derived as demonstrated by small tandem repeat (STR) analysis. The patient did not develop signs of CMV disease at any time point. This study demonstrates the power of multimer staining to define appropriate donors for transplantation. Donors should be screened for their CMVpp65 specific CD8+ T cell frequency. All three
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V110.11.1964.1964